PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 11 | 2005-2019
Tytuł artykułu

On weak-strong uniqueness property for full compressible magnetohydrodynamics flows

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the study of the weak-strong uniqueness property for full compressible magnetohydrodynamics flows. The governing equations for magnetohydrodynamic flows are expressed by the full Navier-Stokes system for compressible fluids enhanced by forces due to the presence of the magnetic field as well as the gravity and an additional equation which describes the evolution of the magnetic field. Using the relative entropy inequality, we prove that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
11
Strony
2005-2019
Opis fizyczny
Daty
wydano
2013-11-01
online
2013-08-23
Bibliografia
  • [1] Carrillo J., Jüngel A., Markowich P.A., Toscani G., Unterreiter A., Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 2001, 133(1), 1–82 http://dx.doi.org/10.1007/s006050170032
  • [2] Chemin J.-Y., About weak-strong uniqueness for the 3D incompressible Navier-Stokes system, Comm. Pure. Appl. Math., 2011, 64(12), 1587–1598 http://dx.doi.org/10.1002/cpa.20386
  • [3] Dafermos C.M., The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 1979, 70(2), 167–179 http://dx.doi.org/10.1007/BF00250353
  • [4] Ducomet B., Feireisl E., The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 2006, 266(3), 595–629 http://dx.doi.org/10.1007/s00220-006-0052-y
  • [5] Eliezer S., Ghatak A., Hora H., An Introduction to Equations of State: Theory and Applications, Cambridge University Press, Cambridge-New York, 1986
  • [6] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford University Press, Oxford, 2004
  • [7] Feireisl E., Jin B.J., Novotný A., Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 2012, 14(4), 717–730 http://dx.doi.org/10.1007/s00021-011-0091-9
  • [8] Feireisl E., Novotný A., Singular Limits in Thermodynamics of Viscous Fluids, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2009
  • [9] Feireisl E., Novotný A., Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 2012, 204(2), 683–706 http://dx.doi.org/10.1007/s00205-011-0490-3
  • [10] Feireisl E., Novotný A., Sun Y., Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 2011, 60(2), 611–631 http://dx.doi.org/10.1512/iumj.2011.60.4406
  • [11] Germain P., Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system, J. Anal. Math., 2008, 105, 169–196 http://dx.doi.org/10.1007/s11854-008-0034-4
  • [12] Germain P., Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 2011, 13(1), 169–196 http://dx.doi.org/10.1007/s00021-009-0006-1
  • [13] Hu X., Wang D., Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 2008, 283(1), 255–284 http://dx.doi.org/10.1007/s00220-008-0497-2
  • [14] Jiang S., Ju Q., Li F., Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 2010, 297(2), 371–400 http://dx.doi.org/10.1007/s00220-010-0992-0
  • [15] Klein R., Botta N., Schneider T., Munz C.D., Roller S., Meister A., Hoffmann L., Sonar T., Asymptotic adaptive methods for multi-scale problems in fluid mechanics, J. Engrg. Math., 2001, 39(1-4), 261–343 http://dx.doi.org/10.1023/A:1004844002437
  • [16] Kwon Y.-S., Trivisa K., On the incompressible limits for the full magnetohydrodynamics flows, J. Differential Equations, 2011, 251(7), 1990–2023 http://dx.doi.org/10.1016/j.jde.2011.04.016
  • [17] Ladyzhenskaya O.A., The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Math. Appl., 2, Gordon and Breach, New York-London-Paris, 1969
  • [18] Leray J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 1934, 63(1), 193–248 http://dx.doi.org/10.1007/BF02547354
  • [19] Lions P.-L., Mathematical Topics in Fluid Mechanics II. Compressible Models, Oxford Lecture Ser. Math. Appl., 10, Oxford Science Publication, Oxford University Press, Oxford-New York, 1998
  • [20] Saint-Raymond L., Hydrodynamic limits: some improvements of the relative entropy method, Ann. Inst. H. Poincarè Anal. Non Linéaire, 2009, 26(3), 705–744 http://dx.doi.org/10.1016/j.anihpc.2008.01.001
  • [21] Serrin J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 1962, 9, 187–195 http://dx.doi.org/10.1007/BF00253344
  • [22] Temam R., Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam-New York-Oxford, 1977
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0297-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.