Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 11 | 1863-1880
Tytuł artykułu

Quotients of an affine variety by an action of a torus

Treść / Zawartość
Warianty tytułu
Języki publikacji
Let X be an affine T-variety. We study two different quotients for the action of T on X: the toric Chow quotient X/C T and the toric Hilbert scheme H. We introduce a notion of the main component H 0 of H, which parameterizes general T-orbit closures in X and their flat limits. The main component U 0 of the universal family U over H is a preimage of H 0. We define an analogue of a universal family WX over the main component of X/C T. We show that the toric Chow morphism restricted on the main components lifts to a birational projective morphism from U 0 to W X. The variety W X also provides a geometric realization of the Altmann-Hausen family. In particular, the notion of W X allows us to provide an explicit description of the fan of the Altmann-Hausen family in the toric case.
Opis fizyczny
  • Moscow State University
  • Steklov Mathematical Institute
  • [1] Alexeev V., Brion M., Moduli of affine schemes with reductive group action, J. Algebraic Geom., 2005, 14(1), 83–117
  • [2] Altmann K., Hausen J., Polyhedral divisors and algebraic torus actions, Math. Ann., 2006, 334(3), 557–607
  • [3] Arzhantsev I.V., Hausen J., On the multiplication map of a multigraded algebra, Math. Res. Lett., 2007, 14(1), 129–136
  • [4] Berchtold F., Hausen J., GIT-equivalence beyond the ample cone, Michigan Math. J., 2006, 54(3), 483–515
  • [5] Bertin J., The punctual Hilbert scheme: an introduction, available at
  • [6] Brion M., Invariant Hilbert schemes, preprint available at
  • [7] Chuvashova O.V., The main component of the toric Hilbert scheme, Tôhoku Math. J., 2008, 60(3), 365–382
  • [8] Cox D.A., Little J.B., Schenck H.K., Toric Varieties, Grad. Stud. Math., 124, American Mathematical Society, Providence, 2011
  • [9] Craw A., Maclagan D., Fiber fans and toric quotients, Discrete Comput. Geom., 2007, 37(2), 251–266
  • [10] Eisenbud D., Harris J., The Geometry of Schemes, Grad. Texts in Math., 197, Springer, New York, 2000
  • [11] Fulton W., Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, 1993
  • [12] Grothendieck A., Éléments de Géométrie Algébrique IV. Étude Locale des Schémas et des Morphismes de Schémas IV, Inst. Hautes Études Sci. Publ. Math., 32, Paris, 1967
  • [13] Haiman M., Sturmfels B., Multigraded Hilbert schemes, J. Algebraic Geom., 2004, 13(4), 725–769
  • [14] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977
  • [15] Kapranov M.M., Sturmfels B., Zelevinsky A.V., Quotients of toric varieties, Math. Ann., 1991, 290(4), 644–655
  • [16] Mumford D., Fogarty J., Kirwan F., Geometric Invariant Theory, 3rd ed., Ergeb. Math. Grenzgeb., 34, Springer, Berlin, 1994
  • [17] Oda T., Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb., 15, Springer, Berlin, 1988
  • [18] Peeva I., Stillman M., Toric Hilbert schemes, Duke Math. J., 2002, 111(3), 419–449
  • [19] Swiecicka J., Quotients of toric varieties by actions of subtori, Colloq. Math., 1999, 82(1), 105–116
  • [20] Vollmert R., Toroidal embeddings and polyhedral divisors, Int. J. Algebra, 2010, 4(5–8), 383–388
  • [21] Ziegler G., Lectures on Polytopes, Grad. Texts in Math., 152, Springer, New York, 1995
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.