Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 10 | 1774-1784

Tytuł artykułu

Abstract Korovkin-type theorems in modular spaces and applications

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results with respect to an axiomatic convergence, including almost convergence. An extension to non positive operators is also studied. Finally, we give some examples and applications to moment and bivariate Kantorovich-type operators, showing that our results are proper extensions of the corresponding classical ones.

Twórcy

  • Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli 1, 06123, Perugia, Italy
  • Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli 1, 06123, Perugia, Italy
  • Department of Mathematics, University of Athens, Panepistimiopolis, Athens, 15784, Greece
  • Department of Mathematics and Computer Sciences, University of Perugia, via Vanvitelli 1, 06123, Perugia, Italy

Bibliografia

  • [1] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 2009, 13(4), 735–743 http://dx.doi.org/10.1007/s11117-008-3002-4[WoS][Crossref]
  • [2] Agratini O., Statistical convergence of a non-positive approximation process, Chaos Solitons Fractals, 2011, 44(11), 977–981 http://dx.doi.org/10.1016/j.chaos.2011.08.003[Crossref][WoS]
  • [3] Altomare F., Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory, 2010, 5, 92–164
  • [4] Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications, de Gruyter Stud. Math., 17, Walter de Gruyter, Berlin, 1994 http://dx.doi.org/10.1515/9783110884586[Crossref]
  • [5] Anastassiou G.A., Duman O., Towards Intelligent Modeling: Statistical Approximation Theory, Intell. Syst. Ref. Libr., 14, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-3-642-19826-7[Crossref]
  • [6] Bardaro C., Boccuto A., Dimitriou X., Mantellini I., Modular filter convergence theorems for abstract sampling-type operators, Appl. Anal. (in press), DOI: 10.1080/00036811.2012.738480 [Crossref]
  • [7] Bardaro C., Mantellini I., Multivariate moment type operators: approximation properties in Orlicz spaces, J. Math. Inequal., 2008, 2(2), 247–259 http://dx.doi.org/10.7153/jmi-02-22[Crossref]
  • [8] Bardaro C., Mantellini I., A Korovkin theorem in multivariate modular function spaces, J. Funct. Spaces Appl., 2009, 7(2), 105–120 http://dx.doi.org/10.1155/2009/863153[Crossref]
  • [9] Bardaro C., Musielak J., Vinti G., Nonlinear Integral Operators and Applications, De Gruyter Ser. Nonlinear Anal. Appl., 9, Walter de Gruyter, Berlin, 2003 http://dx.doi.org/10.1515/9783110199277[Crossref]
  • [10] Belen C., Yildirim M., Statistical approximation in multivariate modular function spaces, Comment. Math., 2011, 51(1), 39–53
  • [11] Boccuto A., Candeloro D., Integral and ideals in Riesz spaces, Inform. Sci., 2009, 179(17), 2891–2902 http://dx.doi.org/10.1016/j.ins.2008.11.001[Crossref]
  • [12] Boccuto A., Dimitriou X., Modular filter convergence theorems for Urysohn integral operators and applications, Acta Math. Sinica, 2013, 29(6), 1055–1066 http://dx.doi.org/10.1007/s10114-013-1443-6[Crossref][WoS]
  • [13] Boccuto A., Dimitriou X., Modular convergence theorems for integral operators in the context of filter exhaustiveness and applications, Mediterr. J. Math., 2013, 10(2), 823–842 http://dx.doi.org/10.1007/s00009-012-0199-z[WoS][Crossref]
  • [14] Borsík J., Šalát T., On F-continuity of real functions, Tatra Mt. Math. Publ., 1993, 2, 37–42
  • [15] Demirci K., I-limit superior and limit inferior, Math. Commun., 2001, 6(2), 165–172
  • [16] Duman O., Özarslan M.A., Erkuş-Duman E., Rates of ideal convergence for approximation operators, Mediterr. J. Math., 2010, 7(1), 111–121 http://dx.doi.org/10.1007/s00009-010-0031-6[WoS][Crossref]
  • [17] Gadjiev A.D., Orhan C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 2002, 32(1), 129–138 http://dx.doi.org/10.1216/rmjm/1030539612[Crossref]
  • [18] Karakuş S., Demirci K., Duman O., Statistical approximation by positive linear operators on modular spaces, Positivity, 2010, 14(2), 321–334 http://dx.doi.org/10.1007/s11117-009-0020-9[Crossref][WoS]
  • [19] Katětov M., Product of filters, Comment. Math. Univ. Carolinae, 1968, 9(1), 173–189
  • [20] Komisarski A., Pointwise I-convergence and I-convergence in measure of sequences of functions, J. Math. Anal. Appl., 2008, 340(2), 770–779 http://dx.doi.org/10.1016/j.jmaa.2007.09.016[Crossref]
  • [21] Korovkin P.P., On convergence of linear positive operators in the spaces of continuous functions, Doklady Akad. Nauk SSSR (N.S.), 1953, 90, 961–964 (in Russian)
  • [22] Kostyrko P., Šalát T., Wilczynski W., I-convergence, Real Anal. Exchange, 2000/01, 26(2), 669–685
  • [23] Kuratowski K., Topology I–II, Academic Press/PWN, New York-London/Warsaw, 1966/1968
  • [24] Lahiri B.K., Das P., I and I*-convergence in topological spaces, Math. Bohem., 2005, 130(2), 153–160
  • [25] Lorentz G.G., A contribution to the theory of divergent sequences, Acta Math., 1948, 80, 167–190 http://dx.doi.org/10.1007/BF02393648[Crossref]
  • [26] Maligranda L., Korovkin theorem in symmetric spaces, Comment. Math. Prace Mat., 1987, 27(1), 135–140
  • [27] Mantellini I., Generalized sampling operators in modular spaces, Comment. Math. Prace Mat., 1998, 38, 77–92
  • [28] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer, Berlin, 1983

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-013-0288-7