We prove that the one-point Lindelöfication of a discrete space of cardinality ω 1 is homeomorphic to a subspace of C p (X) for some hereditarily Lindelöf space X if the axiom [...] holds.
Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde s/n, col. San Manuel, Ciudad Universitaria, Puebla, Pue., CP 72570, México
Bibliografia
[1] Arhangel’skii A.V., Some problems and lines of investigation in general topology, Comment. Math. Univ. Carolin., 1988, 29(4), 611–629
[2] Arhangel’skii A.V., Problems in C p-theory, In: Open Problems in Topology, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1990, 601–616
[4] Arhangel’skii A.V., Uspenskii V.V., On the cardinality of Lindelöf subspaces of function spaces, Comment. Math. Univ. Carolin., 1986, 27(4), 673–676
[5] Engelking R., General Topology, 2nd ed., Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
[6] Fremlin D.H., Consequences of Martin’s Axiom, Cambridge Tracts in Math., 84, Cambridge University Press, Cambridge, 1984 http://dx.doi.org/10.1017/CBO9780511896972[Crossref]
[7] Fuchino S., Shelah S., Soukup L., Sticks and clubs, Ann. Pure Appl. Logic, 1997, 90(1–3), 57–77 http://dx.doi.org/10.1016/S0168-0072(97)00030-4[Crossref]