EN
We prove the following statements: (1) every Tychonoff linked-Lindelöf (centered-Lindelöf, star countable) space can be represented as a closed subspace in a Tychonoff pseudocompact absolutely star countable space; (2) every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented as a closed G δ-subspace in a Hausdorff (regular, Tychonoff) absolutely star countable space; (3) there exists a pseudocompact absolutely star countable Tychonoff space having a regular closed subspace which is not star countable (hence not absolutely star countable); (4) assuming $$2^{\aleph _0 } = 2^{\aleph _1 }$$, there exists an absolutely star countable normal space having a regular closed subspace which is not star countable (hence not absolutely star countable).