PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 9 | 1552-1576
Tytuł artykułu

Towards the classification of weak Fano threefolds with ρ = 2

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, examples of type II Sarkisov links between smooth complex projective Fano threefolds with Picard number one are provided. To show examples of these links, we study smooth weak Fano threefolds X with Picard number two and with a divisorial extremal ray. We assume that the pluri-anticanonical morphism of X contracts only a finite number of curves. The numerical classification of these particular smooth weak Fano threefolds is completed and the geometric existence of some numerical cases is proven.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
9
Strony
1552-1576
Opis fizyczny
Daty
wydano
2013-09-01
online
2013-06-28
Twórcy
Bibliografia
  • [1] Arap M., Cutrone J., Marshburn N., On the existence of certain weak Fano threefolds of Picard number two, preprint available at http://arxiv.org/abs/1112.2611v1
  • [2] Batyrev V.V., Stringy Hodge numbers of varieties with Gorenstein canonical singularities, In: Integrable Systems and Algebraic Geometry, Kobe/Kyoto, June 30–July 4/July 7–11, 1997, World Scientific, River Edge, 1998, 1–32
  • [3] Blanc J., Lamy S., Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links, Proc. Lond. Math. Soc., 2012, 105(5), 1047–1075 http://dx.doi.org/10.1112/plms/pds023
  • [4] Cheltsov I., Shramov C., Cremona groups and the icosahedron, preprint
  • [5] Clemens C.H., Griffiths P.A., The intermediate Jacobian of the cubic threefold, Ann. of Math., 1972, 95, 281–356 http://dx.doi.org/10.2307/1970801
  • [6] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York, 1977 http://dx.doi.org/10.1007/978-1-4757-3849-0
  • [7] Iskovskikh V.A., Fano threefolds. I/II, Izv. Akad. Nauk SSSR Ser. Mat., 1977/1978, 41(3)/42(3), 516–562/506–549 (in Russian)
  • [8] Iskovskikh V.A., Prokhorov Yu.G., Fano Varieties, Algebraic Geometry, V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999
  • [9] Jahnke P., Peternell T., Almost del Pezzo manifolds, Adv. Geom., 2008, 8(3), 387–411 http://dx.doi.org/10.1515/ADVGEOM.2008.026
  • [10] Jahnke P., Peternell T., Radloff I., Threefolds with big and nef anticanonical bundles I, Math. Ann., 2005, 333(3), 569–631 http://dx.doi.org/10.1007/s00208-005-0682-y
  • [11] Jahnke P., Peternell T., Radloff I., Threefolds with big and nef anticanonical bundles II, Cent. Eur. J. Math., 2011, 9(3), 449–488 http://dx.doi.org/10.2478/s11533-011-0023-1
  • [12] Kaloghiros A.-S., A classification of terminal quartic 3-folds and applications to rationality questions, Math. Ann., 2012, 354(1), 263–296 http://dx.doi.org/10.1007/s00208-011-0658-z
  • [13] Knutsen A.L., Smooth curves on projective K3 surfaces, Math. Scand., 2002, 90(2), 215–231
  • [14] Kollár J., Flops, Nagoya Math. J., 1989, 113, 15–36
  • [15] Ottaviani G., On 3-folds in ℙ5 which are scrolls, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1992, 19(3), 451–471
  • [16] Pukhlikov A.V., Birational automorphisms of a three-dimensional quartic with a simple singularity, Math. USSR-Sb., 1989, 63(2), 457–482 http://dx.doi.org/10.1070/SM1989v063n02ABEH003285
  • [17] Saint-Donat B., Projective models of K − 3 surfaces, Amer. J. Math., 1974, 96, 602–639 http://dx.doi.org/10.2307/2373709
  • [18] Shin K.-H., 3-dimensional Fano varieties with canonical singularities, Tokyo J. Math., 1989, 12(2), 375–385 http://dx.doi.org/10.3836/tjm/1270133187
  • [19] Takagi H., On classification of ℚ-Fano 3-folds of Gorenstein index 2. I/II, Nagoya Math. J., 2002, 167, 117–155/157–216
  • [20] Takeuchi K., Some birational maps of Fano 3-folds, Compositio Math., 1989, 71(3), 265–283
  • [21] Takeuchi K., Weak Fano threefolds with del Pezzo fibration, preprint available at http://arxiv.org/abs/0910.2188v1
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0261-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.