Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 9 | 1651-1676
Tytuł artykułu

Global and exponential attractors for a Caginalp type phase-field problem

Treść / Zawartość
Warianty tytułu
Języki publikacji
We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.
  • [1] Babin A., Nicolaenko B., Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dynam. Differential Equations, 1995, 7(4), 567–590
  • [2] Bates P.W., Zheng S.M., Inertial manifolds and inertial sets for the phase-field equations, J. Dynam. Differential Equations, 1992, 4(2), 375–398
  • [3] Brezis H., Analyse Fonctionnelle, Collect. Math. Appl. Maitrise, Masson, Paris, 1983
  • [4] Brochet D., Hilhorst D., Universal attractor and inertial sets for the phase field model, Appl. Math. Lett., 1991, 4(6), 59–62, 1991
  • [5] Brochet D., Hilhorst D., Chen X., Finite-dimensional exponential attractor for the phase field model, Appl. Anal., 1993, 49(3–4), 197–212
  • [6] Brochet D., Hilhorst D., Novick-Cohen A., Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 1994, 7(3), 83–87
  • [7] Caginalp G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 1986, 92(3), 205–245
  • [8] Caginalp G., The role of microscopic anisotropy in the macroscopic behavior of a phase boundary, Ann. Physics, 1986, 172(1), 136–155
  • [9] Cherfils L., Miranville A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 2007, 17(1), 107–129
  • [10] Cherfils L., Miranville A., On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 2009, 54(2), 89–115
  • [11] Christov C.I., Jordan P.M., Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 2005, 94(15), #154301
  • [12] Conti M., Gatti S., Miranville A., Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser., 2012, S5(3), 485–505
  • [13] Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative Evolution Equations, RAM Res. Appl. Math., 37, Masson/John Wiley & Sons, Paris/Chichester, 1994
  • [14] Fabrie P., Galusinski C., Exponential attractors for a partially dissipative reaction system, Asymptotic Anal., 1996, 12(4), 329–354
  • [15] Flavin J.N., Knops R.J., Payne L.E., Decay estimates for the constrained elastic cylinder of variable cross section, Quart. Appl. Math., 1989, 47(2), 325–350
  • [16] Gurtin M.E., Chen P.J., On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 1968, 19(4), 614–627
  • [17] Landau L.D., Lifshitz E.M., Statistical Physics I, 3rd ed., Butterworth-Heinemann, Oxford, 1980
  • [18] Lions J.-L., Magenes E., Problèmes aux Limites non Homogènes et Applications, 2, Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968
  • [19] Miranville A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I Math., 1999, 328(2), 145–150
  • [20] Miranville A., Some models of Cahn-Hilliard equations in nonisotropic media, M2AN Math. Model. Numer. Anal., 2000, 34(3), 539–554
  • [21] Miranville A., Some mathematical models in phase transition, Ravello, 2009 (lecture notes)
  • [22] Miranville A., Quintanilla R., A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 2009, 71(5–6), 2278–2290
  • [23] Miranville A., Quintanilla R., Some generalizations of the Caginalp phase-field system, Appl. Anal., 2009, 88(6), 897–894
  • [24] Miranville A., Quintanilla R., A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 2010, 11(4), 2849–2861
  • [25] Miranville A., Zelik S., Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations, IV, Handb. Diff. Equ., Elsevier/North-Holland, Amsterdam, 2008, 103–200
  • [26] Quintanilla R., Spatial stability for the quasi-static problem of thermoelasticity, J. Elasticity, 2004, 76(2), 93–105
  • [27] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.