Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 8 | 1478-1488
Tytuł artykułu

A parameter-free smoothness indicator for high-resolution finite element schemes

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper presents a postprocessing technique for estimating the local regularity of numerical solutions in high-resolution finite element schemes. A derivative of degree p ≥ 0 is considered to be smooth if a discontinuous linear reconstruction does not create new maxima or minima. The intended use of this criterion is the identification of smooth cells in the context of p-adaptation or selective flux limiting. As a model problem, we consider a 2D convection equation discretized with bilinear finite elements. The discrete maximum principle is enforced using a linearized flux-corrected transport algorithm. The deactivation of the flux limiter in regions of high regularity makes it possible to avoid the peak clipping effect at smooth extrema without generating spurious undershoots or overshoots elsewhere.
Opis fizyczny
  • [1] Cockburn B., Shu C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 1998, 141(2), 199–224
  • [2] Dolejší V., Feistauer M., On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow, In: Numerical Mathematics and Advanced Applications, Ischia, July, 2001, Springer, Milan, 2003, 65–83
  • [3] John V., Schmeyer E., On finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 2008, 198(3–4), 475–494
  • [4] Krivodonova L., Xin J., Remacle J.-F., Chevaugeon N., Flaherty J.E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, In: Workshop on Innovative Time Integrators for PDEs, Appl. Numer. Math., 2004, 48(3–4), 323–338
  • [5] Kuzmin D., Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys., 2009, 228(7), 2517–2534
  • [6] Kuzmin D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 2010, 233(12), 3077–3085
  • [7] Kuzmin D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Internat. J. Numer. Methods Fluids, 2013, 71(9), 1178–1190
  • [8] Kuzmin D., Möller M., Algebraic flux correction I. Scalar conservation laws, In: Flux-Corrected Transport, Sci. Comput., Springer, Berlin, 2005, 155–206
  • [9] Kuzmin D., Turek S., Flux correction tools for finite elements, J. Comput. Phys., 2002, 175(2), 525–558
  • [10] LeVeque R.J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 1996, 33(2), 627–665
  • [11] Michoski C., Mirabito C., Dawson C., Wirasaet D., Kubatko E.J., Westerink J.J., Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations, J. Comput. Phys., 2010, 230(22), 8028–8056
  • [12] Persson P.-O., Peraire J., Sub-cell shock capturing for discontinuous Galerkin methods, In: 44th AIAA Aerospace Sciences Meeting, Reno, January, 2006, preprint available at
  • [13] Qiu J., Shu C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput. 2005, 27(3), 995–1013
  • [14] Schieweck F., A general transfer operator for arbitrary finite element spaces, Preprint 25/00, Otto-von-Guericke Universität Magdeburg, 2000
  • [15] Schieweck F., Skrzypacz P., A local projection stabilization method with shock capturing and diagonal mass matrix for solving non-stationary transport dominated problems, Comput. Methods Appl. Math., 2012, 12(2), 221–240
  • [16] Yang M., Wang Z.J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv. Appl. Math. Mech., 2009, 1(4), 451–480
  • [17] Zalesak S.T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 1979, 31(3), 335–362
  • [18] Zienkiewicz O.C., Zhu J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 1987, 24(2), 337–357
  • [19] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1331–1364
  • [20] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1365–1382
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.