PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 8 | 1392-1415
Tytuł artykułu

Adaptive multiscale scheme based on numerical density of entropy production for conservation laws

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to time consuming simulations, we propose a local time stepping algorithm. We also use high order time extensions applying the Adams-Bashforth time integration technique as well as the second order linear reconstruction in space. We numerically investigate the efficiency of the scheme through several test cases: Sod’s shock tube problem, Lax’s shock tube problem and the Shu-Osher test problem.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
8
Strony
1392-1415
Opis fizyczny
Daty
wydano
2013-08-01
online
2013-05-22
Twórcy
autor
Bibliografia
  • [1] Allahviranloo T., Ahmady N., Ahmady E., Numerical solution of fuzzy differential equations by predictor-corrector method, Inform. Sci., 2007, 177(7), 1633–1647 http://dx.doi.org/10.1016/j.ins.2006.09.015
  • [2] Altmann C., Belat T., Gutnic M., Helluy P., Mathis H., Sonnendrücker É., Angulo W., Hérard J.-M., A local timestepping discontinuous Galerkin algorithm for the MHD system, In: CEMRACS 2008 - Modelling and Numerical Simulation of Complex Fluids, Marseille, July 21–August 29, 2008, ESAIM Proc., 28, EDP Sciences, Les Ulis, 2009, 33–54
  • [3] Berger M.J., Oliger J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 1984, 53(3), 484–512 http://dx.doi.org/10.1016/0021-9991(84)90073-1
  • [4] Cockburn B., Gremaud P.-A., A priori error estimates for numerical methods for scalar conservation laws. Part II: Flux-splitting monotone schemes on irregular Cartesian grids, Math. Comp., 1997, 66(218), 547–572 http://dx.doi.org/10.1090/S0025-5718-97-00838-7
  • [5] Croisille J.-P., Contribution à l’Étude Théorique et à l’Approximation par Éléments Finis du Système Hyperbolique de la Dynamique des Gaz Multidimensionnelle et Multiespèces, PhD thesis, Université de Paris VI, 1991
  • [6] Eymard R., Gallouët T., Herbin R., Finite Volume Methods, In: Handbook of Numerical Analysis, VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, 713–1020
  • [7] Gallouët T., Hérard J.-M., Seguin N., Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 2002, 39(12), 1073–1138 http://dx.doi.org/10.1002/fld.346
  • [8] Godlewski E., Raviart P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci., 118, Springer, New York, 1996
  • [9] Golay F., Numerical entropy production and error indicator for compressible flows, Comptes Rendus Mécanique, 2009, 337(4), 233–237 http://dx.doi.org/10.1016/j.crme.2009.04.004
  • [10] Guermond J.-L., Pasquetti R., Popov B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 2011, 230(11), 4248–4267 http://dx.doi.org/10.1016/j.jcp.2010.11.043
  • [11] Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations. I, 2nd ed., Springer Ser. Comput. Math., 8, Springer, Berlin, 1993
  • [12] Houston P., Mackenzie J.A., Süli E., Warnecke G., A posteriori error analysis for numerical approximations of Friedrichs systems, Numer. Math., 1999, 82(3), 433–470 http://dx.doi.org/10.1007/s002110050426
  • [13] Jenny P., Lee S.H., Tchelepi H.A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simul., 2005, 3(1), 50–64 http://dx.doi.org/10.1137/030600795
  • [14] Karni S., Kurganov A., Local error analysis for approximate solutions of hyperbolic conservation laws, Adv. Comput. Math., 2005, 22(1), 79–99 http://dx.doi.org/10.1007/s10444-005-7099-8
  • [15] Karni S., Kurganov A., Petrova G., A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys., 2002, 178(2), 323–341 http://dx.doi.org/10.1006/jcph.2002.7024
  • [16] Müller S., Stiriba Y., Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput., 2007, 30(3), 493–531 http://dx.doi.org/10.1007/s10915-006-9102-z
  • [17] Osher S., Sanders R., Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp., 1983, 41(164), 321–336 http://dx.doi.org/10.1090/S0025-5718-1983-0717689-8
  • [18] Puppo G., Numerical entropy production on shocks and smooth transitions, J. Sci. Comput., 2002, 17(1–4), 263–271 http://dx.doi.org/10.1023/A:1015117118157
  • [19] Puppo G., Numerical entropy production for central schemes, SIAM J. Sci. Comput., 2004, 25(4), 1382–1415 http://dx.doi.org/10.1137/S1064827502386712
  • [20] Puppo G., Semplice M., Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys., 2011, 10(5), 1132–1160
  • [21] Shu C.-W., Osher S., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 1988, 77(2), 439–471 http://dx.doi.org/10.1016/0021-9991(88)90177-5
  • [22] Simeoni C., Remarks on the consistency of upwind source at interface schemes on nonuniform grids, J. Sci. Comput., 2011, 48(1–3), 333–338 http://dx.doi.org/10.1007/s10915-010-9442-6
  • [23] Sod G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 1978, 27(1), 1–31 http://dx.doi.org/10.1016/0021-9991(78)90023-2
  • [24] Sonar T., Hannemann V., Hempel D. Dynamic adaptivity and residual control in unsteady compressible flow computation, In: Theory and Numerical Methods for Initial-Boundary Value Problems, Math. Comput. Modelling, 1994, 20(10–11), 201–213 http://dx.doi.org/10.1016/0895-7177(94)90178-3
  • [25] Tan Z., Zhang Z., Huang Y., Tang T., Moving mesh methods with locally varying time steps, J. Comput. Phys., 2004, 200(1), 347–367 http://dx.doi.org/10.1016/j.jcp.2004.04.007
  • [26] Tang H., Warnecke G., A class of high resolution difference schemes for nonlinear Hamilton-Jacobi equations with varying time and space grids, SIAM J. Sci. Comput., 2005, 26(4), 1415–1431 http://dx.doi.org/10.1137/S1064827503428126
  • [27] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed., Springer, Berlin, 1999 http://dx.doi.org/10.1007/978-3-662-03915-1
  • [28] Zhang X.D., Trépanier J.-Y., Camarero R., A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws, Comput. Methods Appl. Engrg., 2000, 185(1), 1–19 http://dx.doi.org/10.1016/S0045-7825(99)00099-7
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0252-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.