Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 8 | 1458-1477

Tytuł artykułu

A parameter-free stabilized finite element method for scalar advection-diffusion problems

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We formulate and study numerically a new, parameter-free stabilized finite element method for advection-diffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solving simplified one-dimensional versions of the governing equations on the edges. Then we use H(curl)-conforming edge elements to expand the resulting edge fluxes into an exponentially fitted flux field inside each element. Substitution of the nodal flux by this new flux completes the formulation of the method. Utilization of edge elements to define the numerical flux and the lack of stabilization parameters differentiate our approach from other stabilized methods. Numerical studies with representative advection-diffusion test problems confirm the excellent stability and robustness of the new method. In particular, the results show minimal overshoots and undershoots for both internal and boundary layers on uniform and non-uniform grids.

Wydawca

Czasopismo

Rocznik

Tom

11

Numer

8

Strony

1458-1477

Daty

wydano
2013-08-01
online
2013-05-22

Twórcy

autor
  • Sandia National Laboratories
  • Sandia National Laboratories

Bibliografia

  • [1] Angermann L., Wang S., Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations, Appl. Numer. Math., 2003, 46(1), 19–43 http://dx.doi.org/10.1016/S0168-9274(02)00224-6
  • [2] Arnold D.N., Falk R.S., Winther R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 2006, 15, 1–155 http://dx.doi.org/10.1017/S0962492906210018
  • [3] Badia S., Codina R., Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework, SIAM J. Numer. Anal., 2006, 44(5), 2159–2197 http://dx.doi.org/10.1137/050643532
  • [4] Bochev P.B., Hyman J.M., Principles of mimetic discretizations of differential operators, In: Compatible Spatial Discretizations, Minneapolis, May 11–15, 2004, IMA Vol. Math. Appl., 142, Springer, New York, 2006, 89–119
  • [5] Brezzi F., Bristeau M.O., Franca L.P., Mallet M., Rogé G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 1992, 96(1), 117–129 http://dx.doi.org/10.1016/0045-7825(92)90102-P
  • [6] Brooks A.N., Hughes T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, In: FENOMECH’ 81, I, Stuttgart, August 25–28, 1981, Comput. Methods Appl. Mech. Engrg., 1982, 32(1–3), 199–259
  • [7] Codina R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 1998, 156(1–4), 185–210 http://dx.doi.org/10.1016/S0045-7825(97)00206-5
  • [8] Elman H.C., Silvester D.J., Wathen A.J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University Press, New York, 2005
  • [9] Franca L.P., Farhat C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 1995, 123(1–4), 299–308 http://dx.doi.org/10.1016/0045-7825(94)00721-X
  • [10] Franca L.P., Frey S.L., Hughes T.J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 1992, 95(2), 253–276 http://dx.doi.org/10.1016/0045-7825(92)90143-8
  • [11] Franca L.P., Russo A., Recovering SUPG using Petrov-Galerkin formulations enriched with adjoint residual free bubbles, In: IV WCCM, Buenos Aires, June 29–July 2, 1998, Comput. Methods Appl. Mech. Engrg., 2000, 182(3–4), 333–339
  • [12] Harari I., Hughes T.J.R., What are C and h?: Inequalities for the analysis and design of finite element methods, Comput. Methods Appl. Mech. Engrg., 1992, 97(2), 157–192 http://dx.doi.org/10.1016/0045-7825(92)90162-D
  • [13] Hughes T.J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 1995, 127(1–4), 387–401 http://dx.doi.org/10.1016/0045-7825(95)00844-9
  • [14] Hughes T.J.R., Brooks A., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, In: Finite Elements in Fluids, 4, Banff, June 10–13, 1980, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1982, 47–65
  • [15] Hughes T.J.R., Mallet M., Mizukami A., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 1986, 54(3), 341–355 http://dx.doi.org/10.1016/0045-7825(86)90110-6
  • [16] John V., Schmeyer E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 2008, 198(3–4), 475–494 http://dx.doi.org/10.1016/j.cma.2008.08.016
  • [17] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987
  • [18] Knobloch P., On the definition of the SUPG parameter, Electron. Trans. Numer. Anal., 2008, 32, 76–89
  • [19] Martinez M.J., Comparison of Galerkin and control volume finite element for advection-diffusion problems, Internat. J. Numer. Methods Fluids, 2006, 50(3), 347–376 http://dx.doi.org/10.1002/fld.1060
  • [20] Nédélec J.-C., Mixed finite elements in ℝ3, Numer. Math., 1980, 35(3), 315–341 http://dx.doi.org/10.1007/BF01396415
  • [21] Sacco R., Exponentially fitted shape functions for advection-dominated flow problems in two dimensions, J. Comput. Appl. Math., 1996, 67(1), 161–165 http://dx.doi.org/10.1016/0377-0427(95)00149-2
  • [22] Scharfetter D.L., Gummel H.K., Large-signal analysis of a silicon Read diode oscillator, IEEE Transactions on Electron Devices, 1969, 16(1), 64–77 http://dx.doi.org/10.1109/T-ED.1969.16566
  • [23] Turner D.Z., Nakshatrala K.B., Hjelmstad K.D., A stabilized formulation for the advection-diffusion equation using the generalized finite element method, Internat. J. Numer. Methods Fluids, 2011, 66(1), 64–81 http://dx.doi.org/10.1002/fld.2248
  • [24] Wang S., A novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers, J. Comput. Phys., 1997, 134(2), 253–260 http://dx.doi.org/10.1006/jcph.1997.5691
  • [25] Wang S., A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices, M2AN Math. Model. Numer. Anal., 1999, 33(1), 99–112 http://dx.doi.org/10.1051/m2an:1999107

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-013-0250-8