Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 8 | 1489-1509
Tytuł artykułu

An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data

Treść / Zawartość
Warianty tytułu
Języki publikacji
We propose an adaptive finite element method for the solution of a linear Fredholm integral equation of the first kind. We derive a posteriori error estimates in the functional to be minimized and in the regularized solution to this functional, and formulate corresponding adaptive algorithms. To do this we specify nonlinear results obtained earlier for the case of a linear bounded operator. Numerical experiments justify the efficiency of our a posteriori estimates applied both to the computationally simulated and experimental backscattered data measured in microtomography.
Opis fizyczny
  • Penza State University of Architecture and Building
  • Chalmers University of Technology and University of Gothenburg
  • [1] Asadzadeh M., Eriksson K., On adaptive finite element methods for Fredholm integral equations of the second kind, SIAM J. Numer. Anal., 1994, 31(3), 831–855
  • [2] Atkinson K.E., The numerical solution of integral equations of the second kind, Cambridge Monogr. Appl. Comput. Math., 4, Cambridge University Press, Cambridge, 1997
  • [3] Bakushinsky A.B., A posteriori error estimates for approximate solutions of irregular operator equations, Dokl. Math., 2011, 83(2), 192–193
  • [4] Bakushinsky A.B., Kokurin M.Yu., Smirnova A., Iterative Methods for Ill-Posed Problems, Inverse Ill-Posed Probl. Ser., 54, Walter de Gruyter, Berlin, 2011
  • [5] Basistov Yu.A., Goncharsky A.V., Lekht E.E., Cherepashchuk A.M., Yagola A.G., Application of the regularization method for increasing of the radiotelescope resolution power, Astronomicheskii Zhurnal, 1979, 56(2), 443–449 (in Russian)
  • [6] Beilina L., Klibanov M.V., A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems, 2010, 26(4), #045012
  • [7] Beilina L., Klibanov M.V., Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 2010, 26(12), #125009
  • [8] Beilina L., Klibanov M.V., Kokurin M.Yu., Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, J. Math. Sci. (N.Y.), 2010, 167(3), 279–325
  • [9] Beilina L., Klibanov M.V., Kuzhuget A., New a posteriori error estimates for adaptivity technique and global convergence for the hyperbolic coefficient inverse problem, J. Math. Sci. (N.Y.), 2011, 172(4), 449–476
  • [10] Bolotina A.V., Luk’yanov F.A., Rau E.I., Sennov R.A., Yagola A.G., Energy spectra of electrons backscattered from bulk solid targets, Moscow University Physics Bulletin, 2009, 64(5), 503–506
  • [11] Eriksson K., Estep D., Johnson C., Applied Mathematics: Body and Soul, 3, Springer, Berlin, 2004
  • [12] Goncharsky A.V., Cherepashchuk A.M., Yagola A.G., Ill-Posed Problems of Astrophysics, Moscow, Nauka, 1985 (in Russian)
  • [13] Groetsch C.W., Inverse Problems in the Mathematical Sciences, Vieweg Math. Sci. Engrs., Friedr. Vieweg & Sohn, Braunschweig, 1993
  • [14] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover, Mineola, 2009
  • [15] Johnson C., Szepessy A., Adaptive finite element methods for conservation laws based on a posteriori error estimates, Comm. Pure Appl. Math., 1995, 48(3), 199–234
  • [16] Klibanov M.V., Bakushinsky A.B., Beilina L., Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess, J. Inverse Ill-Posed Probl., 2011, 19(1), 83–105
  • [17] Koshev N.A., Luk’yanov F.A., Rau E.I., Sennov R.A., Yagola A.G., Increasing spatial resolution in the backscattered electron mode of scanning electron microscopy, Bulletin of the Russian Academy of Sciences: Physics, 2011, 75(9), 1181–1184
  • [18] Koshev N.A., Orlikovsky N.A., Rau E.I., Yagola A.G., Solution of the inverse problem of restoring the signals from an electronic microscope in the backscattered electron mode on the class of bounded variation functions, Numerical Methods and Programming, 2011, 12, 362–367 (in Russian)
  • [19] Kress R., Linear Integral Equations, Appl. Math. Sci., 82, Springer, Berlin, 1989
  • [20] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Kochikov I.V., Ill-posed problems of image processing, Soviet Phys. Dokl., 1987, 32(6), 456–458
  • [21] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G., Numerical Methods for the Solution of Ill-Posed Problems, Math. Appl., 328, Kluwer, Dordrecht, 1995
  • [22] Tikhonov A.N., Leonov A.S., Yagola A.G., Nonlinear Ill-Posed Problems, Appl. Math. Math. Comput., 14, Chapman & Hall, London, 1998
  • [23] Yagola A.G., Koshev N.A., Restoration of smeared and defocused color images, Numerical Methods and Programming, 2008, 9, 207–212 (in Russian)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.