PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 8 | 1416-1428
Tytuł artykułu

Generalizations and error analysis of the iterative operator splitting method

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The properties of iterative splitting with two bounded linear operators have been analyzed by Faragó et al. For more than two operators, iterative splitting can be defined in many different ways. A large class of the possible extensions to this case is presented in this paper and the order of accuracy of these methods are examined. A separate section is devoted to the discussion of two of these methods to illustrate how this class of possible methods can be classified with respect to the order of accuracy.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
8
Strony
1416-1428
Opis fizyczny
Daty
wydano
2013-08-01
online
2013-05-22
Twórcy
Bibliografia
  • [1] Bjørhus M., Operator splitting for abstract Cauchy problems, IMA J. Numer. Anal., 1998, 18(3), 419–443 http://dx.doi.org/10.1093/imanum/18.3.419
  • [2] Faragó I., Geiser J., Iterative operator-splitting methods for linear problems, International Journal of Computational Science and Engineering, 2007, 3(4), 255–263
  • [3] Faragó I., Gnandt B., Havasi Á., Additive and iterative operator splitting methods and their numerical investigation, Comput. Math. Appl., 2008, 55(10), 2266–2279 http://dx.doi.org/10.1016/j.camwa.2007.11.017
  • [4] Faragó I., Havasi Á., The mathematical background of operator splitting and the effect of non-commutativity, In: Lecture Notes in Comput. Sci., 2179, Springer, Berlin-Heidelberg, 2001, 264–271
  • [5] Faragó I., Havasi Á., Operator Splittings and their Applications, Mathematical Research Developments Series, Nova Science, Hauppauge, 2009
  • [6] Ladics T., Analysis of the splitting error for advection-reaction problems in air pollution models, Quarterly Journal of the Hungarian Meteorological Service, 2005, 109(3), 173–188
  • [7] Ladics T., Application of operator splitting to solve reaction-diffusion equations, Electron. J. Qual. Theory Differ. Equ., 2012, 9QTDE Proceedings, #9
  • [8] Kanney J.F., Miller C.T., Kelley C.T., Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems, Adv. in Water Res., 2003, 26(3), 247–261 http://dx.doi.org/10.1016/S0309-1708(02)00162-8
  • [9] Sanz-Serna J.M., Geometric integration, In: The State of the Art in Numerical Analysis, York, April, 1996, Inst. Math. Appl. Conf. Ser. New Ser., 63, Clarendon/Oxford University Press, New York, 1997, 121–143
  • [10] Zlatev Z., Dimov I., Computational and Numerical Challenges in Environmental Modelling, Stud. Comput. Math., 13, Elsevier, Amsterdam, 2006
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0246-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.