Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 7 | 1264-1282

Tytuł artykułu

On the dimension of the attractor for a perturbed 3d Ladyzhenskaya model

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We consider the so-called Ladyzhenskaya model of incompressible fluid, with an additional artificial smoothing term ɛΔ3. We establish the global existence, uniqueness, and regularity of solutions. Finally, we show that there exists an exponential attractor, whose dimension we estimate in terms of the relevant physical quantities, independently of ɛ > 0.

Wydawca

Czasopismo

Rocznik

Tom

11

Numer

7

Strony

1264-1282

Daty

wydano
2013-07-01
online
2013-04-26

Twórcy

  • Department of Mathematical Analysis, Charles University in Prague, Sokolovská 83, 186 75, Praha 8, Czech Republic
  • Department of Mathematical Analysis, Charles University in Prague, Sokolovská 83, 186 75, Praha 8, Czech Republic

Bibliografia

  • [1] Ball J.M., Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 1997, 7(5), 475–502 http://dx.doi.org/10.1007/s003329900037[Crossref]
  • [2] Bulíček M., Ettwein F., Kaplický P., Pražák D., The dimension of the attractor for the 3D flow of a non-Newtonian fluid, Commun. Pure Appl. Anal., 2009, 8(5), 1503–1520 http://dx.doi.org/10.3934/cpaa.2009.8.1503[WoS][Crossref]
  • [3] Bulíček M., Ettwein F., Kaplický P., Pražák D., On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 2010, 33(16), 1995–2010
  • [4] Constantin P., Foias C., Navier-Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago, 1988
  • [5] Feireisl E., Pražák D., Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS Ser. Appl. Math., 4, American Institute of Mathematical Sciences, Springfield, 2010
  • [6] Ladyzhenskaya O.A., New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Proc. Steklov Inst. Math., 1967, 102, 95–118
  • [7] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969
  • [8] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman & Hall, London, 1996
  • [9] de Rham G., Variétés Différentiables, 3rd ed., Publications de l’Institut de mathématique de l’Université de Nancago, 3, Hermann, Paris, 1973
  • [10] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 [Crossref]
  • [11] Temam R., Navier-Stokes Equations, American Mathematical Society Chelsea, Providence, 2001

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-013-0242-8