Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2013 | 11 | 6 | 1140-1152

Tytuł artykułu

Numerical analysis of nonlinear model of excited carrier decay

Treść / Zawartość

Warianty tytułu

Języki publikacji



This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved. The identifiability analysis of the parameters of deep centers is performed and the fitting of the model to experimental data is done by using the genetic optimization algorithm. Results of numerical experiments are presented.










Opis fizyczny




  • Department of Mathematical Modeling, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223, Vilnius, Lithuania
  • Department of Mathematical Modeling, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223, Vilnius, Lithuania
  • Department of Mathematical Modeling, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223, Vilnius, Lithuania


  • [1] Ascher U.M., Petzold L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1998[Crossref]
  • [2] Carnevale N.T., Hines M.L., The NEURON Book, Cambridge University Press, Cambridge, 2006[Crossref]
  • [3] Chegis R.Yu., A study of difference schemes for a class of models of excitability, Comput. Math. Math. Phys., 1992, 32(6), 757–767
  • [4] Chis O.-T., Banga J.R., Balsa-Canto E., Structural identifiability of systems biology models: a critical comparison of methods, PLoS ONE, 6(11), #e27755
  • [5] Čiegis R., Tumanova N., Finite-difference schemes for parabolic problems on graphs, Lith. Math. J., 2010, 50(2), 164–178[Crossref]
  • [6] Enns R.H., It’s a Nonlinear World, Springer Undergrad. Texts Math. Technol., Springer, New York, 2011[Crossref]
  • [7] Gerisch A., Chaplain M.A.J., Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems, Math. Comput. Modelling, 2006, 43(1-2), 49–75[Crossref]
  • [8] Goudon T., Miljanovic V., Schmeiser C., On the Shockley-Read-Hall Model: generation-recombination in semiconductors, SIAM J. Appl. Math., 2007, 67(4), 1183–1201[WoS][Crossref]
  • [9] Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations I, Springer Ser. Comput. Math., 8, Springer, Berlin, 1993
  • [10] Hairer E., Wanner G., Solving Ordinary Differential Equations II, Springer Ser. Comput. Math., 14, Springer, Berlin, 1996[Crossref]
  • [11] Hall R.N., Electron-hole recombination in Germanium, Physical Review, 1952, 87(2), 387–387[Crossref]
  • [12] Hanslien M., Karlsen K.H., Tveito A., A maximum principle for an explicit finite difference scheme approximating the Hodgkin-Huxley model, BIT, 2005, 45(4), 725–741[Crossref]
  • [13] Hauser J.R., Numerical Methods for Nonlinear Engineering Models, Springer, Berlin, 2009[Crossref]
  • [14] Hodgkin A., Huxley A., A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 1952, 117(4), 500–544
  • [15] Horváth Z., Positivity of Runge-Kutta and diagonally split Runge-Kutta methods, Appl. Numer. Math., 1998, 28(2–4), 309–326[Crossref]
  • [16] Hundsdorfer W., Verwer J.G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., 33, Springer, Berlin-Heidelberg-New York-Tokyo, 2003
  • [17] Ichimura M., Temperature dependence of a slow component of excess carrier decay curves, Solid-State Electronics, 2006, 50(11–12), 1761–1766[Crossref]
  • [18] Macdonald D., Cuevas A., Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon, Phys. Rev. B, 2003, 67(7), #075203[Crossref]
  • [19] Mascagni M., The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve conduction, SIAM J. Numer. Anal., 1990, 27(4), 941–962[Crossref]
  • [20] Miao H., Xia X., Perelson A.S., Wu H., On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 2011, 53(1), 3–39[Crossref][WoS]
  • [21] Mitra S., Mitra A., Kundu D., Genetic algorithm and M-estimator based robust sequential estimation of parameters of nonlinear sinusoidal signals, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(7), 2796–2809[Crossref][WoS]
  • [22] Pincevičius A., Meilūnas M., Tumanova N., Numerical simulation of the conductivity relaxation in the high resistivity semiconductor, Math. Model. Anal., 2007, 12(3), 379–388[Crossref][WoS]
  • [23] Schmerler S., Hahn T., Hahn S., Niklas J., Gründig-Wendrock B., Explanation of positive and negative PICTS peaks in SI-GaAs, Journal of Materials Science: Materials in Electronics, 2008, 19(S1), 328–332[Crossref]
  • [24] Shockley W., Read W.T., Statistics of the recombinations of holes and electrons, Phys. Rev., 1952, 87(5), 835–842[Crossref]
  • [25] Sivanandam S.N., Deepa S.N., Introduction to Genetic Algorithms, Springer, Berlin, 2010
  • [26] Starikovičius V., Čiegis R., Iliev O., A parallel solver for the design of oil filters, Math. Model. Anal., 2011, 16(2), 326–341[Crossref][WoS]
  • [27] Sundnes J., Lines G.T., Cai X., Nielsen B.F., Mardal K.-A., Tveito A., Computing the Electrical Activity in the Heart, Monogr. Comput. Sci. Eng., 1, Springer, Berlin, 2006
  • [28] Tikidji-Hamburyan R.A., Genetic algorithm modification to speed up parameter fitting for a multicompartment neuron model, BMC Neuroscience, 2008, 9(S1), #P90 [Crossref]
  • [29] Tumanova N., Čiegis R., Predictor-corrector domain decomposition algorithm for parabolic problems on graphs, Math. Model. Anal., 2012, 17(1), 113–127[WoS][Crossref]
  • [30] Van Geit W., De Schutter E., Achard P., Automated neuron model optimization techniques: a review, Biol. Cybernet., 2008, 99(4–5), 241–251[Crossref]
  • [31] Yao L., Sethares W.A., Nonlinear parameter estimation via the genetic algorithm, IEEE Trans. Signal Process., 1994, 42(4), 927–935[Crossref]

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.