Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 5 | 931-939

Tytuł artykułu

Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.

Wydawca

Czasopismo

Rocznik

Tom

11

Numer

5

Strony

931-939

Opis fizyczny

Daty

wydano
2013-05-01
online
2013-03-14

Twórcy

  • Ladrón de Guevara

Bibliografia

  • [1] Aigner M., Combinatorial Theory, Classics Math., Springer, Berlin, 1997 http://dx.doi.org/10.1007/978-3-642-59101-3
  • [2] Andrews G.E., Askey R., Roy R., Special Functions, Encyclopedia Math. Appl., 71, Cambridge University Press, Cambridge, 2001
  • [3] Benjamin A.T., Gaebler D., Gaebler R., A combinatorial approach to hyperharmonic numbers, Integers, 2003, 3, #A15
  • [4] Borwein D., Borwein J.M., Girgensohn R., Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc., 1995, 38(2), 277–294 http://dx.doi.org/10.1017/S0013091500019088
  • [5] Boyadzhiev K.N., Exponential polynomials, Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, Abstr. Appl. Anal., 2009, #168672
  • [6] Broder A.Z., The r-Stirling numbers, Discrete Math., 1984, 49(3), 241–259 http://dx.doi.org/10.1016/0012-365X(84)90161-4
  • [7] Charalambides Ch.A., Combinatorial Methods in Discrete Distributions, Wiley Ser. Probab. Stat., Wiley-Interscience, Hoboken, 2005 http://dx.doi.org/10.1002/0471733180
  • [8] Cheon G.-S., Jung J.-H., r-Whitney numbers of Dowling lattices, Discrete Math., 2012, 312(15), 2337–2348 http://dx.doi.org/10.1016/j.disc.2012.04.001
  • [9] Chowla S., Nathanson M.B., Mellin’s formula and some combinatorial identities, Monatsh. Math., 1976, 81(4), 261–265 http://dx.doi.org/10.1007/BF01387753
  • [10] Comtet L., Advanced Combinatorics, Reidel, Dordrecht, 2010
  • [11] Conway J.H., Guy R.K., The Book of Numbers, Copernicus, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-4072-3
  • [12] Corcino R.B., The (r; β)-Stirling numbers, Mindanao Forum, 1999, 14(2), 91–100
  • [13] Corcino R.B., Corcino C.B., Aldema R., Asymptotic normality of the (r; β)-Stirling numbers, Ars. Combin., 2006, 81, 81–96
  • [14] Corcino R.B., Montero M.B., Corcino C.B., On generalized Bell numbers for complex argument, Util. Math., 2012, 88, 267–279
  • [15] Crandall R.E., Buhler J.P., On the evaluation of Euler sums, Experiment. Math., 1994, 3(4), 275–285 http://dx.doi.org/10.1080/10586458.1994.10504297
  • [16] Cvijovic D., The Dattoli-Srivastava conjectures concerning generating functions involving the harmonic numbers, Appl. Math. Comput., 2010, 215(11), 4040–4043 http://dx.doi.org/10.1016/j.amc.2009.12.011
  • [17] Dattoli G., Srivastava H.M., A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett., 2008, 21(7), 686–693 http://dx.doi.org/10.1016/j.aml.2007.07.021
  • [18] Dobinski G., Summirung der Reihe Σn m/n! für m = 1,2, 3,…, Archiv der Mathematik und Physik, 1877, 61, 333–336
  • [19] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, 1, Robert E. Krieger, Melbourne, 1981
  • [20] Flajolet P., Salvy B., Euler sums and contour integral representations, Experiment. Math., 1998, 7(1), 15–35 http://dx.doi.org/10.1080/10586458.1998.10504356
  • [21] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products, 7th ed., Academic Press, Amsterdam, 2007
  • [22] Graham R.L., Knuth D.E., Patashnik O., Concrete Mathematics, Addison-Wesley, Reading, 1994
  • [23] Hansen E.R., A Table of Series and Products, Prentice-Hall, Englewood Cliffs, 1975
  • [24] Mező I., Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., 2009, 4, #1
  • [25] Mező I., A new formula for the Bernoulli polynomials, Results Math., 2010, 58(3–4), 329–335 http://dx.doi.org/10.1007/s00025-010-0039-z
  • [26] Mező I., Dil A., Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., 2009, 7(2), 310–321 http://dx.doi.org/10.2478/s11533-009-0008-5
  • [27] Mező I., Dil A., Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 2010, 130(2), 360–369 http://dx.doi.org/10.1016/j.jnt.2009.08.005
  • [28] Pitman J., Some probabilistic aspects of set partitions, Amer. Math. Monthly, 1997, 104(3), 201–209 http://dx.doi.org/10.2307/2974785
  • [29] Rucinski A., Voigt B., A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl., 1990, 35(2), 161–172
  • [30] Sofo A., Srivastava H.M., Identities for the harmonic numbers and binomial coefficients, Ramanujan J., 2011, 25(1), 93–113 http://dx.doi.org/10.1007/s11139-010-9228-3

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-013-0214-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.