Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system
We rigorously derive energy estimates for the second order vector wave equation with gauge condition for the electric field with non-constant electric permittivity function. This equation is used in the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system. Our numerical experiments illustrate efficiency of the modified hybrid scheme in two and three space dimensions when the method is applied for generation of backscattering data in the reconstruction of the electric permittivity function.
Chalmers University of Technology and Gothenburg University
Bibliografia
[1] Assous F., Degond P., Heintze E., Raviart P.-A., Serge J., On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 1993, 109(2), 222–237 http://dx.doi.org/10.1006/jcph.1993.1214
[2] Beilina L., Grote M.J., Adaptive hybrid finite element/difference method for Maxwell’s equations, TWMS J. Pure Appl. Math., 2010, 1(2), 176–197
[3] Beilina L., Johnson C., A posteriori error estimation in computational inverse scattering, Math. Models Methods Appl. Sci., 2005, 15(1), 23–37 http://dx.doi.org/10.1142/S0218202505003885
[4] Beilina L., Johnsson C., Hybrid FEM/FDM method for an inverse scattering problem, In: Numerical Mathematics and Advanced Applications, Ischia, July, 2001, Springer, Milan, 2003, 545–556
[5] Beilina L., Klibanov M.V., Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 2010, 26(12), #125009 http://dx.doi.org/10.1088/0266-5611/26/12/125009
[6] Beilina L., Samuelsson K., Åhlander K., Efficiency of a hybrid method for the wave equation, In: Finite Element Methods, Jyväskylä, 2000, GAKUTO Internat. Ser. Math. Sci. Appl., 15, Gakkotosho, Tokyo, 2001, 9–21
[7] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer, New York, 1994
[8] Budak B.M., Samarskii A.A., Tikhonov A.N., A Collection of Problems in Mathematical Physics, Dover Phoenix Ed., Dover, Mineola, 1988
[9] Cangellaris A.C., Wright D.B., Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena, IEEE Trans. Antennas and Propagation, 1991, 39(10), 1518–1525 http://dx.doi.org/10.1109/8.97384
[10] Edelvik F., Ledfelt G., Explicit hybrid time domain solver for the Maxwell equations in 3D, J. Sci. Comput., 2000, 15(1), 61–78 http://dx.doi.org/10.1023/A:1007625629485
[11] Elmkies A., Joly P., Éléments finis d’arête et condensation de masse pour les équations de Maxwell: le cas 2D, C. R. Acad. Sci. Paris Sér. I Math., 1997, 324(11), 1287–1293 http://dx.doi.org/10.1016/S0764-4442(99)80415-7
[12] Engquist B., Majda A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 1977, 31(139), 629–651 http://dx.doi.org/10.1090/S0025-5718-1977-0436612-4
[13] Hughes T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, 1987
[14] Jiang B., The Least-Squares Finite Element Method, Scientific Computation, Springer, Berlin-Heidelberg, 1998 http://dx.doi.org/10.1007/978-3-662-03740-9
[15] Jiang B.-N., Wu J. Povinelli L.A., The origin of spurious solutions in computational electromagnetics, J. Comput. Phys., 1996, 125(1), 104–123 http://dx.doi.org/10.1006/jcph.1996.0082
[16] Jin J., The Finite Element Method in Electromagnetics, John Wiley&Sons, New York, 1993
[18] Klibanov M.V., Fiddy M.A., Beilina L., Pantong N., Schenk J., Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem, Inverse Problems, 2010, 26(4), #045003 http://dx.doi.org/10.1088/0266-5611/26/4/045003
[19] Ladyzhenskaya O.A., The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci., 49, Springer, New York, 1985 http://dx.doi.org/10.1007/978-1-4757-4317-3
[20] Monk P.B., Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003 http://dx.doi.org/10.1093/acprof:oso/9780198508885.001.0001
[21] Monk P.B., Parrott A.K., A dispersion analysis of finite element methods for Maxwell’s equations, SIAM J. Sci. Comput., 1994, 15(4), 916–937 http://dx.doi.org/10.1137/0915055
[22] Munz C.-D., Omnes P., Schneider R., Sonnendrücker E., Voß U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 2000, 161(2), 484–511 http://dx.doi.org/10.1006/jcph.2000.6507
[23] Paulsen K.D., Lynch D.R., Elimination of vector parasites in finite element Maxwell solutions, IEEE Trans. Microwave Theory Tech., 1991, 39(3), 395–404 http://dx.doi.org/10.1109/22.75280
[24] Perugia I., Schötzau D., The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., 2002, 72(243), 1179–1214 http://dx.doi.org/10.1090/S0025-5718-02-01471-0
[25] Rylander T., Bondeson A., Stable FEM-FDTD hybrid method for Maxwell’s equations, Comput. Phys. Comm., 2000, 125(1–3), 75–82 http://dx.doi.org/10.1016/S0010-4655(99)00463-4
[26] Rylander T., Bondeson A., Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations, J. Comput. Phys., 2002, 179(2), 426–438 http://dx.doi.org/10.1006/jcph.2002.7063
[27] Yee K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 7