Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 4 | 702-733
Tytuł artykułu

Energy estimates and numerical verification of the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system

Treść / Zawartość
Warianty tytułu
Języki publikacji
We rigorously derive energy estimates for the second order vector wave equation with gauge condition for the electric field with non-constant electric permittivity function. This equation is used in the stabilized Domain Decomposition Finite Element/Finite Difference approach for time-dependent Maxwell’s system. Our numerical experiments illustrate efficiency of the modified hybrid scheme in two and three space dimensions when the method is applied for generation of backscattering data in the reconstruction of the electric permittivity function.
Opis fizyczny
  • Chalmers University of Technology and Gothenburg University
  • [1] Assous F., Degond P., Heintze E., Raviart P.-A., Serge J., On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 1993, 109(2), 222–237
  • [2] Beilina L., Grote M.J., Adaptive hybrid finite element/difference method for Maxwell’s equations, TWMS J. Pure Appl. Math., 2010, 1(2), 176–197
  • [3] Beilina L., Johnson C., A posteriori error estimation in computational inverse scattering, Math. Models Methods Appl. Sci., 2005, 15(1), 23–37
  • [4] Beilina L., Johnsson C., Hybrid FEM/FDM method for an inverse scattering problem, In: Numerical Mathematics and Advanced Applications, Ischia, July, 2001, Springer, Milan, 2003, 545–556
  • [5] Beilina L., Klibanov M.V., Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 2010, 26(12), #125009
  • [6] Beilina L., Samuelsson K., Åhlander K., Efficiency of a hybrid method for the wave equation, In: Finite Element Methods, Jyväskylä, 2000, GAKUTO Internat. Ser. Math. Sci. Appl., 15, Gakkotosho, Tokyo, 2001, 9–21
  • [7] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math., 15, Springer, New York, 1994
  • [8] Budak B.M., Samarskii A.A., Tikhonov A.N., A Collection of Problems in Mathematical Physics, Dover Phoenix Ed., Dover, Mineola, 1988
  • [9] Cangellaris A.C., Wright D.B., Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena, IEEE Trans. Antennas and Propagation, 1991, 39(10), 1518–1525
  • [10] Edelvik F., Ledfelt G., Explicit hybrid time domain solver for the Maxwell equations in 3D, J. Sci. Comput., 2000, 15(1), 61–78
  • [11] Elmkies A., Joly P., Éléments finis d’arête et condensation de masse pour les équations de Maxwell: le cas 2D, C. R. Acad. Sci. Paris Sér. I Math., 1997, 324(11), 1287–1293
  • [12] Engquist B., Majda A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 1977, 31(139), 629–651
  • [13] Hughes T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, 1987
  • [14] Jiang B., The Least-Squares Finite Element Method, Scientific Computation, Springer, Berlin-Heidelberg, 1998
  • [15] Jiang B.-N., Wu J. Povinelli L.A., The origin of spurious solutions in computational electromagnetics, J. Comput. Phys., 1996, 125(1), 104–123
  • [16] Jin J., The Finite Element Method in Electromagnetics, John Wiley&Sons, New York, 1993
  • [17] Joly P., Variational Methods for Time-Dependent Wave Propagation Problems, In: Topics in Computational Wave Propagation, Lect. Notes Comput. Sci. Eng., 31, Springer, Berlin, 2003, 201–264
  • [18] Klibanov M.V., Fiddy M.A., Beilina L., Pantong N., Schenk J., Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem, Inverse Problems, 2010, 26(4), #045003
  • [19] Ladyzhenskaya O.A., The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci., 49, Springer, New York, 1985
  • [20] Monk P.B., Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003
  • [21] Monk P.B., Parrott A.K., A dispersion analysis of finite element methods for Maxwell’s equations, SIAM J. Sci. Comput., 1994, 15(4), 916–937
  • [22] Munz C.-D., Omnes P., Schneider R., Sonnendrücker E., Voß U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 2000, 161(2), 484–511
  • [23] Paulsen K.D., Lynch D.R., Elimination of vector parasites in finite element Maxwell solutions, IEEE Trans. Microwave Theory Tech., 1991, 39(3), 395–404
  • [24] Perugia I., Schötzau D., The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., 2002, 72(243), 1179–1214
  • [25] Rylander T., Bondeson A., Stable FEM-FDTD hybrid method for Maxwell’s equations, Comput. Phys. Comm., 2000, 125(1–3), 75–82
  • [26] Rylander T., Bondeson A., Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations, J. Comput. Phys., 2002, 179(2), 426–438
  • [27] Yee K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 7
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.