Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 4 | 787-799
Tytuł artykułu

Combining stochastic and deterministic approaches within high efficiency molecular simulations

Treść / Zawartość
Warianty tytułu
Języki publikacji
Generalized Shadow Hybrid Monte Carlo (GSHMC) is a method for molecular simulations that rigorously alternates Monte Carlo sampling from a canonical ensemble with integration of trajectories using Molecular Dynamics (MD). While conventional hybrid Monte Carlo methods completely re-sample particle’s velocities between MD trajectories, our method suggests a partial velocity update procedure which keeps a part of the dynamic information throughout the simulation. We use shadow (modified) Hamiltonians, the asymptotic expansions in powers of the discretization parameter corresponding to timestep, which are conserved by symplectic integrators to higher accuracy than true Hamiltonians. We present the implementation of this method into the highly efficient MD code GROMACS and demonstrate its performance and accuracy on computationally expensive systems like proteins in comparison with the molecular dynamics techniques already available in GROMACS. We take advantage of the state-of-the-art algorithms adopted in the code, leading to an optimal implementation of the method. Our implementation introduces virtually no overhead and can accurately recreate complex biological processes, including rare event dynamics, saving much computational time compared with the conventional simulation methods.
Opis fizyczny
  • Basque Center for Applied Mathematics
  • Basque Center for Applied Mathematics
  • Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072
  • [1] Aisen P., Transferrin, the transferrin receptor, and the uptake of iron by cells, In: Metal Ions in Biological Systems, 35, Marcel Dekker, New York, 1998, 585–631
  • [2] Akhmatskaya E., Bou-Rabee N., Reich S., A comparison of generalized hybrid Monte Carlo methods without momentum flip, J. Comput. Phys., 2009, 228(6), 2256–2265
  • [3] Akhmatskaya E., Bou-Rabee N., Reich S., Erratum to ”A comparison of generalized hybrid Monte Carlo methods with and without momentum flip” [J. Comput. Phys. 228 (2009) 2256–2265], J. Comput. Phys., 2009, 228(19), 7492–7496
  • [4] Akhmatskaya E., Reich S., GSHMC: An efficient method for molecular simulation, J. Comput. Phys., 2008, 227(10), 4934–4954
  • [5] Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling, J. Chem. Phys., 2007, 126(1), #014101
  • [6] Darden T., York D., Pedersen L., Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems, J. Chem. Phys., 1993, 98(12), 10089–10092
  • [7] Duane S., Kennedy A.D., Pendleton B.J., Roweth D., Hybrid Monte Carlo, Phys. Lett. B, 1987, 195, 216–222
  • [8] Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G., A smooth particle mesh Ewald potential method, J. Chem. Phys., 1995, 103(19), 8577–8593
  • [9] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L., Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 1983, 79(2), 926–935
  • [10] Hairer E., Lubich C., Wanner G., Geometric Numerical Integration, Springer Ser. Comput. Math., 31, Springer, Berlin-Heidelberg, 2002
  • [11] Hess B., Bekker H., Berendsen H.J.C. Fraaije J.G.E.M., LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 1997, 18(12), 1463–1472<1463::AID-JCC4>3.0.CO;2-H
  • [12] Hess B., Kutzner C., van der Spoel D., Lindahl E., GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 2008, 4(3), 435–447
  • [13] Horowitz A.M., A generalized guided Monte Carlo algorithm, Phys. Lett. B, 1991, 268(2), 247–252
  • [14] Izaguirre J.A., Hampton S.S., Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules, J. Comput. Phys., 2004, 200(2), 581–604
  • [15] Kennedy A.D., Pendleton B., Acceptances and autocorrelations in hybrid Monte Carlo, Nuclear Phys. B - Proceedings Supplements, 1991, 20, 118–121
  • [16] Kennedy A.D., Pedlenton B., Cost of the generalised hybrid Monte Carlo algorithm for free field theory, Nuclear Phys. B, 2001, 607(3), 456–510
  • [17] Klausner R.D., Ashwell G., van Renswoude J., Harford J.B., Bridges K.R., Binding of apotransferrin to K562 cells¶ explanation of the transferrin cycle, Proc. Natl. Acad. Sci. USA, 1983, 80(8), 2263–2266
  • [18] Liu J.S., Monte Carlo Strategies in Scientific Computing, Springer Ser. Statist., Springer, New York, 2001
  • [19] MacGillivray R.T., Moore S.A., Chen J., Anderson B.F., Baker H., Luo Y., Bewley M., Smith C.A., Murphy M.E., Wang Y., Mason A.B., Woodworth R.C., Brayer G.D., Baker E.N., Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release, Biochemistry, 1998, 37(22), 7919–7928
  • [20] MacKerell A.D., Bashford D., Bellott E.M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiórkiewicz-Kuczera J., Yin D., Karplus M., All-atom empirical potential for molecular modeling and dynamics studies of proteins, The Journal of Physical Chemistry B, 1998, 102(18), 3586–3616
  • [21] Mujika J.I., Escribano B., Akhmatskaya E., Ugalde J.M., Lopez X., Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 is necessary to prompt the metal release, Biochemistry, 2012, 51(35), 7017–7027
  • [22] Rinaldo D., Field M.J., A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein, Biophys. J., 2003, 85(6), 3485–3501
  • [23] Skeel R.D., Hardy D.J., Practical construction of modified Hamiltonians, SIAM J. Comput., 2001, 23(4), 1172–1188
  • [24] Sweet C.R., Hampton S.S., Skeel R.D., Izaguirre J.A., A separable shadow Hamiltonian hybrid Monte Carlo method, J. Chem. Phys., 2009, 131(17), #174106
  • [25] Wee C.L., Sansom M.S., Reich S., Akhmatskaya E., Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system, The Journal of Physical Chemistry B, 2008, 112(18), 5710–5717
  • [26] GROMACS Programmer’s Guide, available at
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.