PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 4 | 642-663
Tytuł artykułu

A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We compare numerical experiments from the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method, applied to three benchmark problems based on two different partial differential equations. Both methods are described in detail and we highlight some strengths and weaknesses of each method via the numerical comparisons. The two equations used in the benchmark problems are the viscous Burgers’ equation and the porous medium equation, both in one dimension. Simulations are made for the two methods for: a) a travelling wave solution for the viscous Burgers’ equation, b) the Barenblatt selfsimilar analytical solution of the porous medium equation, and c) a waiting-time solution for the porous medium equation. Simulations are carried out for varying mesh sizes, and the numerical solutions are compared by computing errors in two ways. In the case of an analytic solution being available, the errors in the numerical solutions are computed directly from the analytic solution. In the case of no availability of an analytic solution, an approximation to the error is computed using a very fine mesh numerical solution as the reference solution.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
4
Strony
642-663
Opis fizyczny
Daty
wydano
2013-04-01
online
2013-01-29
Bibliografia
  • [1] Baines M.J., Moving Finite Elements, Monographs on Numerical Analysis, Oxford Sci. Publ., Clarendon Press, Oxford University Press, New York, 1994
  • [2] Baines M.J., Hubbard M.E., Jimack P.K., A moving finite element method using monitor functions, School of Computing Research Report, 2003.04, University of Leeds, 2003, available at http://www.engineering.leeds.ac.uk/computing/research/publications/reports/2003/2003_04.png
  • [3] Beckett G., Mackenzie J.A., Ramage A., Sloan D.M., On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution, J. Comput. Phys., 2001, 167(2), 372–392 http://dx.doi.org/10.1006/jcph.2000.6679
  • [4] Beckett G., Mackenzie J.A., Ramage A., Sloan D.M., Computational solution of two-dimensional unsteady PDEs using moving mesh methods, J. Comput. Phys., 2002, 182(2), 478–495 http://dx.doi.org/10.1006/jcph.2002.7179
  • [5] Blom J.G., Verwer J.G., On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines, Note NM-N8902, CWI, Amsterdam, 1989, available at http://oai.cwi.nl/oai/asset/5850/5850A.png
  • [6] de Boor C., A Practical Guide to Splines, Appl. Math. Sci., 27, Springer, New York-Berlin, 1978 http://dx.doi.org/10.1007/978-1-4612-6333-3
  • [7] Cao W., Huang W., Russell R.D., An r-adaptive finite element method based upon moving mesh PDEs, J. Comput. Phys., 1999, 149(2), 221–244 http://dx.doi.org/10.1006/jcph.1998.6151
  • [8] Carlson N.N., Miller K., Design and application of a gradient-weighted moving finite element code I: in one dimension, SIAM J. Sci. Comput., 1998, 19(3), 728–765 http://dx.doi.org/10.1137/S106482759426955X
  • [9] Carlson N.N., Miller K., Design and application of a gradient-weighted moving finite element code II: in two dimensions, SIAM J. Sci. Comput., 1998, 19(3), 766–798 http://dx.doi.org/10.1137/S1064827594269561
  • [10] Dorfi E.A., Drury L.O’C., Simple adaptive grids for 1-D initial value problems, J. Comput. Phys., 1987, 69(1), 175–195 http://dx.doi.org/10.1016/0021-9991(87)90161-6
  • [11] Hairer E., Wanner G., Solving Ordinary Differential Equations, II, Springer Ser. Comput. Math., 14, Springer, Berlin, 1991 http://dx.doi.org/10.1007/978-3-662-09947-6
  • [12] Huang W., Ren Y., Russell R.D., Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal., 1994, 31(3), 709–730 http://dx.doi.org/10.1137/0731038
  • [13] Huang W., Russell R.D., Analysis of moving mesh partial differential equations with spatial smoothing, SIAM J. Numer. Anal., 1997, 34(3), 1106–1126 http://dx.doi.org/10.1137/S0036142993256441
  • [14] Huang W., Russell R.D., Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 1999, 20(3), 998–1015 http://dx.doi.org/10.1137/S1064827596315242
  • [15] Huang W., Russell R.D., Adaptive Moving Mesh Methods, Appl. Math. Sci., 174, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-1-4419-7916-2
  • [16] Huang W., Sun W., Variational mesh adaptation II: Error estimates and monitor functions, J. Comput. Phys., 2003, 184(2), 619–648 http://dx.doi.org/10.1016/S0021-9991(02)00040-2
  • [17] Jeffreys H., Jeffreys B.S., Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1946
  • [18] Jimack P.K., Wathen A.J., Temporal derivatives in the finite-element method on continuously deforming grids, SIAM J. Numer. Anal., 1991, 28(4), 990–1003 http://dx.doi.org/10.1137/0728052
  • [19] Lacey A.A., Initial motion of the free boundary for a nonlinear diffusion equation, IMA J. Appl. Math., 1983, 31(2), 113–119 http://dx.doi.org/10.1093/imamat/31.2.113
  • [20] Lacey A.A, Ockendon J.R., Tayler A.B., “Waiting-time” solutions of a nonlinear diffusion equation, SIAM J. Appl. Math., 1982, 42(6), 1252–1264
  • [21] Miller K., Moving finite elements II, SIAM J. Numer. Anal., 1981, 18(6), 1033–1057 http://dx.doi.org/10.1137/0718071
  • [22] Miller K., A geometrical-mechanical interpretation of gradient-weighted moving finite elements, SIAM J. Numer. Anal., 1997, 34(1), 67–90 http://dx.doi.org/10.1137/S0036142994260884
  • [23] Miller K., Miller R.N., Moving finite elements I, SIAM J. Numer. Anal., 1981, 18(6), 1019–1032 http://dx.doi.org/10.1137/0718070
  • [24] Ortner C., Moving Mesh Partial Differential Equations, MSc thesis, Oxford University Computing Laboratory, Oxford, 2003
  • [25] Wacher A., String Gradient Weighted Moving Finite Elements for Systems of Partial Differential Equations, PhD thesis, Oxford University Computing Laboratory, Oxford, 2004
  • [26] Wacher A., Sobey I., String Gradient Weighted Moving Finite Elements in multiple dimensions with applications in two dimensions, SIAM J. Sci. Comput., 2007, 29(2), 459–480 http://dx.doi.org/10.1137/040619557
  • [27] Wacher A., Sobey I., Miller K., String gradient weighted moving finite elements for systems of partial differential equations, Numerical Analysis Group Report, 03/15, Computing Laboratory, Oxford, 2003, available at http://eprints.maths.ox.ac.uk/1193/1/NA-03-15.png
  • [28] Wathen A.J., Baines M.J., On the structure of the moving finite-element equations, IMA J. Numer. Anal., 1985, 5(2), 161–182 http://dx.doi.org/10.1093/imanum/5.2.161
  • [29] White A.B. Jr., On selection of equidistributing meshes for two-point boundary-value problems, SIAM J. Numer. Anal., 1979, 16(3), 472–502 http://dx.doi.org/10.1137/0716038
  • [30] White A.B. Jr., On the numerical solution of initial-boundary value problems in one space dimension, SIAM J. Numer. Anal., 1982, 19(4), 683–697 http://dx.doi.org/10.1137/0719048
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-012-0161-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.