An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.
[3] Burrage K., Hundsdorfer W.H., Verwer J.G., A study of B-convergence of Runge-Kutta methods, Computing, 1986, 36(1–2), 17–34 http://dx.doi.org/10.1007/BF02238189
[4] Deuflhard P., Recent progress in extrapolation methods for ordinary differential equations, SIAM Rev., 1985, 27(4), 505–535 http://dx.doi.org/10.1137/1027140
[5] Faragó I., Havasi Á., Zlatev Z., Richardson-extrapolated sequential splitting and its application, J. Comput. Appl. Math., 2009, 226(2), 218–227 http://dx.doi.org/10.1016/j.cam.2008.08.003
[6] Frank J., Hundsdorfer W., Verwer J.G., On the stability of implicit-explicit linear multistep methods, Special Issue on Time Integration, Amsterdam, 1996, Appl. Numer. Math., 1997, 25(2–3), 193–205 http://dx.doi.org/10.1016/S0168-9274(97)00059-7
[7] Hoff D., Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations, SIAM J. Numer. Anal., 1978, 15(6), 1161–1177 http://dx.doi.org/10.1137/0715077
[8] Hundsdorfer W., Verwer J., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., 33, Springer, Berlin, 2003
[9] Koto T., IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comput. Appl. Math., 2008, 215(1), 182–195 http://dx.doi.org/10.1016/j.cam.2007.04.003
[10] Kriston Á., Inzelt G., Faragó I., Szabó T., Simulation of the transient behavior of fuel cells by using operator splitting techniques for real-time applications, Computers & Chemical Engineering, 2010, 34(3), 339–348 http://dx.doi.org/10.1016/j.compchemeng.2009.11.006
[12] Newman J., Thomas-Alyea K.E., Electrochemical Systems, 3rd ed., The Electrochemical Society Series, John Wiley & Sons, Hoboken, 2004
[13] Robinson M., IMEX method convergence for a parabolic equation, J. Differential Equations, 2007, 241(2), 225–236 http://dx.doi.org/10.1016/j.jde.2007.07.001
[14] Subramanian V.R., Boovaragavan V., Diwakar V.D., Toward real-time simulation of physics based Lithium-ion battery models, Electrochemical and Solid-State Letters, 2007, 10(11), A255–A260 http://dx.doi.org/10.1149/1.2776128
[15] Verwer J.G., Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines, In: Numerical Analysis, Dundee, 1985, Pitman Res. Notes Math. Ser., 140, Longman Sci. Tech., Harlow, 1985, 220–237
[16] Verwer J.G., Blom J.G., Hundsdorfer W., An implicit-explicit approach for atmospheric transport-chemistry problems, Appl. Numer. Math., 1996, 20(1–2), 191–209 http://dx.doi.org/10.1016/0168-9274(95)00126-3
[17] Ziegler C., Yu H.M., Schumacher J.O., Two-phase dynamic modeling of PEMFCs and simulation of cyclovoltammograms, Journal of the Electrochemical Society, 2005, 152(8), A1555–A1567 http://dx.doi.org/10.1149/1.1946408