Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 5 | 829-850

Tytuł artykułu

Revisiting the construction of gap functions for variational inequalities and equilibrium problems via conjugate duality

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Based on conjugate duality we construct several gap functions for general variational inequalities and equilibrium problems, in the formulation of which a so-called perturbation function is used. These functions are written with the help of the Fenchel-Moreau conjugate of the functions involved. In case we are working in the convex setting and a regularity condition is fulfilled, these functions become gap functions. The techniques used are the ones considered in [Altangerel L., Boţ R.I., Wanka G., On gap functions for equilibrium problems via Fenchel duality, Pac. J. Optim., 2006, 2(3), 667–678] and [Altangerel L., Boţ R.I., Wanka G., On the construction of gap functions for variational inequalities via conjugate duality, Asia-Pac. J. Oper. Res., 2007, 24(3), 353–371]. By particularizing the perturbation function we rediscover several gap functions from the literature. We also characterize the solutions of various variational inequalities and equilibrium problems by means of the properties of the convex subdifferential. In case no regularity condition is fulfilled, we deliver also necessary and sufficient sequential characterizations for these solutions. Several examples are illustrating the theoretical aspects.

Twórcy

autor
  • Babeş-Bolyai University
  • Chemnitz University of Technology

Bibliografia

  • [1] Altangerel L., Boţ R.I., Wanka G., On gap functions for equilibrium problems via Fenchel duality, Pac. J. Optim., 2006, 2(3), 667–678
  • [2] Altangerel L., Boţ R.I., Wanka G., On the construction of gap functions for variational inequalities via conjugate duality, Asia-Pac. J. Oper. Res., 2007, 24(3), 353–371 http://dx.doi.org/10.1142/S0217595907001309
  • [3] Auslender A., Optimisation, Masson, Paris-New York-Barcelona, 1976
  • [4] Aussel D., Hadjisavvas N., On quasimonotone variational inequalities, J. Optim. Theory Appl., 2004, 121(2), 445–450 http://dx.doi.org/10.1023/B:JOTA.0000037413.45495.00
  • [5] Bauschke H.H., Combettes P.L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, New York, 2011
  • [6] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1–4), 123–145
  • [7] Boţ R.I., Conjugate Duality in Convex Optimization, Lecture Notes in Econom. and Math. Systems, 637, Springer, Berlin, 2010
  • [8] Boţ R.I., Capătă A.E., Existence results and gap functions for the generalized equilibrium problem with composed functions, Nonlinear Anal., 2010, 72(1), 316–324 http://dx.doi.org/10.1016/j.na.2009.06.055
  • [9] Boţ R.I., Csetnek E.R., Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements, Optimization, 2012, 61(1), 35–65 http://dx.doi.org/10.1080/02331934.2010.505649
  • [10] Boţ R.I., Csetnek E.R., Wanka G., Sequential optimality conditions in convex programming via perturbation approach, J. Convex Anal., 2008, 15(1), 149–164
  • [11] Boţ R.I., Csetnek E.R., Wanka G., Sequential optimality conditions for composed convex optimization problems, J. Math. Anal. Appl., 2008, 342(2), 1015–1025 http://dx.doi.org/10.1016/j.jmaa.2007.12.066
  • [12] Boţ R.I., Grad S.-M., Lower semicontinuous type regularity conditions for subdifferential calculus, Optim. Methods Softw., 2010, 25(1), 37–48 http://dx.doi.org/10.1080/10556780903208977
  • [13] Boţ R.I., Grad S.-M., Wanka G., Duality in Vector Optimization, Vector Optim., Springer, Berlin, 2009
  • [14] Boţ R.I., Wanka G., A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces, Nonlinear Anal., 2006, 64(12), 2787–2804 http://dx.doi.org/10.1016/j.na.2005.09.017
  • [15] Burachik R.S., Jeyakumar V., A new geometric condition for Fenchel’s duality in infinite dimensional spaces, Math. Program., 2005, 104(2-3), 229–233 http://dx.doi.org/10.1007/s10107-005-0614-3
  • [16] Burachik R.S., Jeyakumar V., Wu Z.-Y., Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 2006, 64(9), 1998–2006 http://dx.doi.org/10.1016/j.na.2005.07.034
  • [17] Chen G.Y., Goh C.J., Yang X.Q., On gap functions and duality of variational inequality problems, J. Math. Anal. Appl., 1997, 214(2), 658–673 http://dx.doi.org/10.1006/jmaa.1997.5608
  • [18] Cioban L., Csetnek E.R., Duality for ɛ-variational inequalities via the subdifferential calculus, Nonlinear Anal., 2012, 75(6), 3142–3156 http://dx.doi.org/10.1016/j.na.2011.12.012
  • [19] Csetnek E.R., Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization. Applications of the Duality Theory to Enlargements of Maximal Monotone Operators, Logos, Berlin, 2010
  • [20] Dinh N., Strodiot J.J., Nguyen V.H., Duality and optimality conditions for generalized equilibrium problems involving DC functions, J. Global Optim., 2010, 48(2), 183–208 http://dx.doi.org/10.1007/s10898-009-9486-z
  • [21] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., 1, North-Holland, Amsterdam-Oxford, 1976
  • [22] Facchinei F., Pang J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, I, II, Springer Ser. Oper. Res., Springer, New York, 2003
  • [23] Giannessi F., On some connections among variational inequalities, combinatorial and continuous optimization, Ann. Oper. Res., 1995, 58, 181–200 http://dx.doi.org/10.1007/BF02032131
  • [24] Giannessi F., On Minty variational principle, In: New Trends in Mathematical Programming, Appl. Optim., 13, Kluwer, Boston, 1998, 93–99
  • [25] Goh C.J., Yang X.Q., Duality in Optimization and Variational Inequalities, Optim. Theory Appl., 2, Taylor & Francis, London, 2002
  • [26] Gowda M.S., Teboulle M., A comparison of constraint qualifications in infinite-dimensional convex programming, SIAM J. Control Optim., 1990, 28(4), 925–935 http://dx.doi.org/10.1137/0328051
  • [27] Harker P.T., Pang J.-S., Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Programming, 1990, 48(2), 161–220 http://dx.doi.org/10.1007/BF01582255
  • [28] Hiriart-Urruty J.-B., Lemaréchal C., Convex Analysis and Minimization Algorithms, I, II, Grundlehren Math. Wiss., 305, 306, Springer, Berlin, 1993
  • [29] Jeyakumar V., Li G.Y., Stable zero duality gaps in convex programming: complete dual characterisations with applications to semidefinite programs, J. Math. Anal. Appl., 2009, 360(1), 156–167 http://dx.doi.org/10.1016/j.jmaa.2009.06.043
  • [30] Jeyakumar V., Song W., Dinh N., Lee G.M., Stable strong duality in convex optimization, Applied Mathematics Report, 05/22, University of New South Wales, Sydney, 2005
  • [31] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and their Applications, Pure Appl. Math., 88, Academic Press, New York-London, 1980
  • [32] Konnov I.V., Schaible S., Duality for equilibrium problems under generalized monotonicity, J. Optim. Theory Appl., 2000, 104(2), 395–408 http://dx.doi.org/10.1023/A:1004665830923
  • [33] Mosco U., Dual variational inequalities, J. Math. Anal. Appl., 1972, 40(1), 202–206 http://dx.doi.org/10.1016/0022-247X(72)90043-1
  • [34] Rockafellar R.T., Duality and stability in extremum problems involving convex functions, Pacific J. Math., 1967, 21, 167–187 http://dx.doi.org/10.2140/pjm.1967.21.167
  • [35] Rockafellar R.T., Convex Analysis, Princeton Math. Ser., 28, Princeton University Press, Princeton, 1970
  • [36] Yao J.C., Variational inequalities with generalized monotone operators, Math. Oper. Res., 1994, 19(3), 691–705 http://dx.doi.org/10.1287/moor.19.3.691
  • [37] Zălinescu C., Convex Analysis in General Vector Spaces, World Scientific, River Edge, 2002 http://dx.doi.org/10.1142/5021
  • [38] Zhang J., Wan C., Xiu N., The dual gap function for variational inequalities, Appl. Math. Optim., 2003, 48(2), 129–148 http://dx.doi.org/10.1007/s00245-003-0771-9

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0151-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.