EN
We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that $\sigma (S_t ) = \{ z \in \mathbb{C}:|z| \leqslant e^{t\alpha _0 } \} ,$ where α 0 is the growth bound of (S t )t≥0. A similar result is obtained for the spectrum of (P +S −t ), t ≥ 0. Moreover, for an operator T commuting with S t , t ≥ 0, we establish the inclusion [...] , where \(\mathcal{O}\) = {z ∈ ℂ: Im z α 0}.