We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.
[1] Avgustinovich S., Fon-Der-Flaass D., Cartesian products of graphs and metric spaces, European J. Combin., 2000, 21(7), 847–851 http://dx.doi.org/10.1006/eujc.2000.0401
[2] Bernig A., Foertsch T., Schroeder V., Non standard metric products, Beiträge Algebra Geom., 2003, 44(2), 499–510
[3] Chen C.-H., Warped products of metric spaces of curvature bounded from above, Trans. Amer. Math. Soc., 1999, 351(12), 4727–4740 http://dx.doi.org/10.1090/S0002-9947-99-02154-6
[4] Gawron P.W., Nekrashevych V.V., Sushchansky V.I., Conjugation in tree automorphism groups, Internat. J. Algebra Comput., 2001, 11(5), 529–547 http://dx.doi.org/10.1142/S021819670100070X
[5] Moszynska M., On the uniqueness problem for metric products, Glas. Mat. Ser. III, 1992, 27(47)(1), 145–158