Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 1 | 17-26

Tytuł artykułu

Collineation group as a subgroup of the symmetric group

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Let ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension ≥ 3 over a field. Let H be a closed (in the pointwise convergence topology) subgroup of the permutation group $\mathfrak{S}_\psi $ of the set ψ. Suppose that H contains the projective group and an arbitrary self-bijection of ψ transforming a triple of collinear points to a non-collinear triple. It is well known from [Kantor W.M., McDonough T.P., On the maximality of PSL(d+1,q), d ≥ 2, J. London Math. Soc., 1974, 8(3), 426] that if ψ is finite then H contains the alternating subgroup $\mathfrak{A}_\psi $ of $\mathfrak{S}_\psi $. We show in Theorem 3.1 that H = $\mathfrak{S}_\psi $, if ψ is infinite.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

11

Numer

1

Strony

17-26

Daty

wydano
2013-01-01
online
2012-10-24

Bibliografia

  • [1] Ball R.W., Maximal subgroups of symmetric groups, Trans. Amer. Math. Soc., 1966, 121(2), 393–407 http://dx.doi.org/10.1090/S0002-9947-1966-0202813-2
  • [2] Becker H., Kechris A.S., The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser., 232, Cambridge University Press, Cambridge, 1996 http://dx.doi.org/10.1017/CBO9780511735264
  • [3] Bergman G., Shelah S., Closed subgroups of the infinite symmetric group, Algebra Universalis, 2006, 55(2–3), 137–173 http://dx.doi.org/10.1007/s00012-006-1959-z
  • [4] Cameron P.J., Oligomorphic Permutation Groups, London Math. Soc. Lecture Note Ser., 152, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511549809
  • [5] Dixon J.D., Mortimer B., Permutation Groups, Grad. Texts in Math., 163, Springer, New York, 1996 http://dx.doi.org/10.1007/978-1-4612-0731-3
  • [6] Hodges W., Model Theory, Encyclopedia Math. Appl., 42, Cambridge University Press, Cambridge, 2008
  • [7] Huisman J., Mangolte F., The group of automorphisms of a real rational surface is n-transitive, Bull. Lond. Math. Soc., 2009, 41(3), 563–568 http://dx.doi.org/10.1112/blms/bdp033
  • [8] Kantor W.M., Jordan groups, J. Algebra, 1969, 12(4), 471–493 http://dx.doi.org/10.1016/0021-8693(69)90024-6
  • [9] Kantor W.M., McDonough T.P., On the maximality of PSL(d+1, q), d ≥ 2, J. London Math. Soc., 1974, 8(3), 426 http://dx.doi.org/10.1112/jlms/s2-8.3.426
  • [10] Kollár J., Mangolte F., Cremona transformations and diffeomorphisms of surfaces, Adv. Math., 2009, 222(1), 44–61 http://dx.doi.org/10.1016/j.aim.2009.03.020
  • [11] Macpherson H.D., Neumann P.M., Subgroups of infinite symmetric groups, J. London Math. Soc., 1990, 42(1), 64–84 http://dx.doi.org/10.1112/jlms/s2-42.1.64
  • [12] Miller G.A., Limits of the degree of transitivity of substitution groups, Bull. Amer. Math. Soc., 1915, 22(2), 68–71 http://dx.doi.org/10.1090/S0002-9904-1915-02720-5
  • [13] Richman F., Maximal subgroups of infinite symmetric groups, Canad. Math. Bull., 1967, 10(3), 375–381 http://dx.doi.org/10.4153/CMB-1967-035-0
  • [14] Wielandt H., Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad, Schriften des mathematischen Seminars und des Instituts für angewandte Mathematik der Universität Berlin, 1934, 2, 151–174

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0131-6