We describe some known metrics in the family of convex sets which are stronger than the Hausdorff metric and propose a new one. These stronger metrics preserve in some sense the facial structure of convex sets under small changes of sets.
[2] Baier R., Farkhi E.M., Differences of convex compact sets in the space of directed sets I. The space of directed sets, Set-Valued Anal., 2001, 9(3), 217–245 http://dx.doi.org/10.1023/A:1012046027626[Crossref]
[3] Demyanov V.F., Rubinov A.M., Constructive Nonsmooth Analysis, Approximation & Optimization, 7, Peter Lang, Frankfurt am Main, 1995
[4] Demyanov V.F., Rubinov A.M. (Eds.), Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, Kluwer, Dordrecht, 2000
[5] Diamond P., Kloeden P., Rubinov A., Vladimirov A., Comparative properties of three metrics in the space of compact convex sets, Set-Valued Anal., 1997, 5(3), 267–289 http://dx.doi.org/10.1023/A:1008667909101[Crossref]
[6] Grzybowski J., Lesniewski A., Rzezuchowski T., The completion of the space of convex, bounded sets with respect to the Demyanov metric, Demonstratio Math. (in press)
[7] Lesniewski A., Rzezuchowski T., The Demyanov metric for convex, bounded sets and existence of Lipschitzian Selectors, J. Convex Anal., 2011, 18(3), 737–747
[8] Plis A., Uniqueness of optimal trajectories for non-linear control systems, Ann. Polon. Math., 1975, 29(4), 397–401
[9] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511526282[Crossref]