Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 10 | 6 | 2138-2159
Tytuł artykułu

Equivariant Morse equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by .x = −∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.
Opis fizyczny
  • Faculty of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
  • [1] Bredon G.E., Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Academic Press, New York-London, 1972
  • [2] Conley C., Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math., 38, American Mathematical Society, Providence, 1978 [Crossref]
  • [3] Conley C., Zehnder E., Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., 1984, 37(2), 207–253[Crossref]
  • [4] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987[Crossref]
  • [5] Field M.J., Dynamics and Symmetry, ICP Adv. Texts Math., 3, Imperial College Press, London, 2007
  • [6] Floer A., A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems, 1987, 7(1), 93–103[Crossref]
  • [7] Floer A., Zehnder E., The equivariant Conley index and bifurcations of periodic solutions of Hamiltonian systems, Ergodic Theory Dynam. Systems, 1988, 8, 87–97[Crossref]
  • [8] Gęba K., Degree for gradient equivariant maps and equivariant Conley index, In: Topological Nonlinear Analysis II, Frascati, June, 1995, Progr. Nonlinear Differential Equations Appl., 27, Birkhäuser, Boston, 1997, 247–272
  • [9] Gęba K., Rybicki S., Some remarks on the Euler ring U(G), J. Fixed Point Theory Appl., 2008, 3(1), 143–158[Crossref]
  • [10] Goębiewska A., Rybicki S., Global bifurcations of critical orbits of G-invariant strongly indefinite functionals, Nonlinear Anal., 2011, 74(5), 1823–1834[Crossref][WoS]
  • [11] Hatcher A., Algebraic Topology, Cambridge University Press, Cambridge, 2002
  • [12] Illman S., Equivariant singular homology and cohomology for actions of compact Lie groups, Proceedings of the Second Conference on Compact Transformation Groups, Amherst, June 7–18, 1971, Lecture Notes in Math., 298, Springer, Berlin, 1972, 403–415[Crossref]
  • [13] Izydorek M., Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonlinear Anal., 2002, 51(1), Ser. A: Theory Methods, 33–66
  • [14] Izydorek M., Styborski M., Morse inequalities via Conley index theory, In: Topological Methods in Nonlinear Analysis, Torun, February 9–13, 2009, Lect. Notes Nonlinear Anal., 12, Juliusz Schauder Center for Nonlinear Studies, Torun, 2011
  • [15] Kawakubo K., The Theory of Transformation Groups, Clarendon Press, Oxford University Press, New York, 1991
  • [16] Razvan M.R., On Conley’s fundamental theorem of dynamical systems, Int. J. Math. Math. Sci., 2004, 25–28, 1397–1401[Crossref]
  • [17] Ruan H., Rybicki S., Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal., 2008, 68(6), 1479–1516[Crossref][WoS]
  • [18] Rybakowski K.P., The Homotopy Index and Partial Differential Equations, Universitext, Springer, Berlin, 1987[Crossref]
  • [19] Rybicki S., A degree for S 1-equivariant orthogonal maps and its applications to bifurcation theory, Nonlinear Anal., 1994, 23(1), 83–102[Crossref]
  • [20] Rybicki S., Degree for equivariant gradient maps, Milan J. Math., 2005, 73, 103–144[Crossref]
  • [21] Spanier E.H., Algebraic Topology, McGraw-Hill, New York-Toronto, 1966
  • [22] Styborski M., Topological Invariants for Equivariant Flows: Conley Index and Degree, PhD thesis, Polish Academy of Sciences, Warsaw, 2009
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.