Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1 to the above differential inclusions such that a.e. in [0, 1], .
Kategorie tematyczne
- 39A05: General theory
- 26A24: Differentiation (functions of one variable): general theory, generalized derivatives, mean-value theorems
- 46G05: Derivatives
- 28A15: Abstract differentiation theory, differentiation of set functions
- 28A05: Classes of sets (Borel fields, σ -rings, etc.), measurable sets, Suslin sets, analytic sets
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
1944-1952
Opis fizyczny
Daty
wydano
2012-12-01
online
2012-10-12
Twórcy
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland, grgb@alpha.mini.pw.edu.pl
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland, fryszko@alpha.mini.pw.edu.pl
Bibliografia
- [1] Aubin J.P., Cellina A., Differential Inclusions, Grundlehren Math. Wiss., 264, Springer, Berlin, 1984 http://dx.doi.org/10.1007/978-3-642-69512-4[Crossref]
- [2] Aubin J.-P., Frankowska H., Set-Valued Analysis, Systems Control Found. Appl., 2, Birkhäuser, Boston, 1990
- [3] Bartuzel G., Fryszkowski A., A topological property of the solution set to the Sturm-Liouville differential inclusions, Demonstratio Math., 1995, 28(4), 903–914
- [4] Bartuzel G., Fryszkowski A., Stability of principal eigenvalue of the Schrödinger type problem for differential inclusions, Topol. Methods Nonlinear Anal., 2000, 16(1), 181–194
- [5] Bartuzel G., Fryszkowski A., A class of retracts in L p with some applications to differential inclusion, Discuss. Math. Differ. Incl. Control Optim., 2001, 22(2), 213–224 http://dx.doi.org/10.7151/dmdico.1038[Crossref]
- [6] Bressan A., Cellina A., Fryszkowski A., A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc., 1991, 112(2), 413–418 http://dx.doi.org/10.1090/S0002-9939-1991-1045587-8[Crossref]
- [7] Cellina A., On the set of solutions to Lipschitzian differential inclusions, Differential Integral Equations, 1988, 1(4), 495–500
- [8] Cellina A., Ornelas A., Representation of the attainable set for Lipschitzian differential inclusions, Rocky Mountain J. Math., 1992, 22(1), 117–124 http://dx.doi.org/10.1216/rmjm/1181072798[Crossref]
- [9] Cernea A., On the existence of solutions for a higher order differential inclusion without convexity, Electron. J. Qual. Theory Differ. Equ., 2007, #8
- [10] Colombo R.M., Fryszkowski A., Rzezuchowski T., Staicu V., Continuous selections of solution sets of Lipschitzean differential inclusions, Funkcial. Ekvac., 1991, 34(2), 321–330
- [11] Filippov A.F., Classical solutions of differential equations with multi-valued right-hand side, SIAM J. Control., 1967, 5, 609–621 http://dx.doi.org/10.1137/0305040[Crossref]
- [12] Fryszkowski A., Fixed Point Theory for Decomposable Sets, Topol. Fixed Point Theory Appl., 2, Kluwer, Dordrecht, 2004
- [13] Fryszkowski A., Rzezuchowski T., Continuous version of Filippov-Wazewski relaxation theorem, J. Differential Equations, 1991, 94(2), 254–265 http://dx.doi.org/10.1016/0022-0396(91)90092-N[Crossref]
- [14] Hartman Ph., Ordinary Differential Equations, Birkhäuser, Boston, 1982
- [15] Hu Sh., Papageorgiou N.S., Handbook of Multivalued Analysis I, Math. Appl., 419, Kluwer, Dordrecht, 1997
- [16] Naselli Ricceri O., A-fixed points of multi-valued contractions, J. Math. Anal. Appl., 1988, 135(2), 406–418 http://dx.doi.org/10.1016/0022-247X(88)90164-3[Crossref]
- [17] Naselli Ricceri O., Ricceri B., Differential inclusions depending on a parameter, Bull. Polish Acad. Sci. Math., 1989, 37(7–12), 665–671
- [18] Papageorgiou N.S., Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolin., 1988, 29(2), 355–363
- [19] Repovš D., Semenov P.V., Continuous Selections of Multivalued Mappings, Math. Appl., 455, Kluwer, Dordrecht, 1998
- [20] Rybinski L.E., A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions, J. Math. Anal. Appl., 1991, 160(1), 24–46 http://dx.doi.org/10.1016/0022-247X(91)90287-A[Crossref]
- [21] Tolstonogov A.A., On the structure of the solution set for differential inclusions in a Banach space, Mat. Sb., 1982, 118(160)(1), 3–18 (in Russian)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-012-0119-2