Certain properties of homotopies of admissible multivalued mappings shall be presented, along with their applications as the tool for examining the acyclicity of a space.
Institute of Electronics, Department of Electronics and Information Technology, Technical University of Koszalin, Śniadeckich 2, 75-453, Koszalin, Poland
Bibliografia
[1] Borsuk K., Theory of Retracts, Monogr. Mat., 44, PWN, Warsaw, 1967
[2] Borsuk K., Theory of Shape, Monogr. Mat., 59, PWN, Warsaw, 1975
[3] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Topol. Fixed Point Theory Appl., 4, Springer, Dordrecht, 2006
[4] Keesling J.E., A non-movable trivial-shape decomposition of the Hilbert cube, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 1975, 23(9), 997–998
[5] Suszycki A., On extensions of multivalued maps, Bull. Acad. Polon. Sci. Sér. Sci. Math., 1979, 27(2), 183–188
[6] Suszycki A., Retracts and homotopies for multimaps, Fund. Math., 1983, 115(1), 9–26
[7] Taylor J.L., A counterexample in shape theory, Bull. Amer. Math. Soc., 1975, 81, 629–632 http://dx.doi.org/10.1090/S0002-9904-1975-13768-2[Crossref]