We construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.
[1] Ardonne E., Kedem R., Stone M., Fermionic characters and arbitrary highest-weight integrable \( \widehat{\mathfrak{s}\mathfrak{l}}_{r + 1} \) -modules, Comm. Math. Phys., 2006, 264(2), 427–464 http://dx.doi.org/10.1007/s00220-005-1486-3
[2] Baranović I., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for D 4(1), Comm. Algebra, 2011, 39(3), 1007–1051 http://dx.doi.org/10.1080/00927871003639329
[3] Calinescu C., Principal subspaces of higher-level standard \( \widehat{\mathfrak{s}\mathfrak{l}(3)} \) -modules, J. Pure Appl. Algebra, 2007, 210(2), 559–575 http://dx.doi.org/10.1016/j.jpaa.2006.10.018
[4] Calinescu C., Lepowsky J., Milas A., Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A,D,E, J. Algebra, 2010, 323(1), 167–192 http://dx.doi.org/10.1016/j.jalgebra.2009.09.029
[5] Capparelli S., Lepowsky J., Milas A., The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math., 2003, 5(6), 947–966 http://dx.doi.org/10.1142/S0219199703001191
[6] Capparelli S., Lepowsky J., Milas A., The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J., 2006, 12(3), 379–397 http://dx.doi.org/10.1007/s11139-006-0150-7
[8] Dong C., Li H., Mason G., Simple currents and extensions of vertex operator algebras, Comm. Math. Phys., 1996, 180(3), 671–707 http://dx.doi.org/10.1007/BF02099628
[9] Feigin B., Jimbo M., Loktev S., Miwa T., Mukhin E., Bosonic formulas for (k, l)-admissible partitions, Ramanujan J., 2003, 7(4), 485–517; Addendum to “Bosonic formulas for (k, l)-admissible partitions”, Ramanujan J., 2003, 7(4), 519–530 http://dx.doi.org/10.1023/B:RAMA.0000012430.68976.c0
[10] Feigin B., Jimbo M., Miwa T., Mukhin E., Takeyama Y., Fermionic formulas for (k, 3)-admissible configurations, Publ. Res. Inst. Math. Sci., 2004, 40(1), 125–162 http://dx.doi.org/10.2977/prims/1145475968
[11] Feigin B., Kedem R., Loktev S., Miwa T., Mukhin E., Combinatorics of the \( \widehat{\mathfrak{s}\mathfrak{l}}_2 \) spaces of coinvariants, Transform. Groups, 2001, 6(1), 25–52 http://dx.doi.org/10.1007/BF01236061
[12] Feigin E., The PBW filtration, Represent. Theory, 2009, 13, 165–181 http://dx.doi.org/10.1090/S1088-4165-09-00349-5
[13] Frenkel I.B., Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal., 1981, 44(3), 259–327 http://dx.doi.org/10.1016/0022-1236(81)90012-4
[14] Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 1993, 104, #494
[17] Georgiev G., Combinatorial constructions of modules for infinite-dimensional Lie algebras. I. Principal subspace, J. Pure Appl. Algebra, 1996, 112(3), 247–286 http://dx.doi.org/10.1016/0022-4049(95)00143-3
[18] Huang Y.-Z., Lepowsky J., Toward a theory of tensor products for representations of a vertex operator algebra, In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, New York, June 3–7, 1991, World Scientific, River Edge, 1992, 344–354
[20] Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A., Affine crystals and vertex models, In: Infinite Analysis, Kyoto, June 1–August 31, 1991, Adv. Ser. Math. Phys., 16, World Scientific, River Edge, 1992, 449–484
[21] Lepowsky J., Primc M., Structure of the Standard Modules for the Affine Lie Algebra A 1(1), Contemp. Math., 46, American Mathematical Society, Providence, 1985 http://dx.doi.org/10.1090/conm/046
[22] Li H., Extension of vertex operator algebras by a self-dual simple module, J. Algebra, 1997, 187(1), 236–267 http://dx.doi.org/10.1006/jabr.1997.6795
[23] Li H., The physics superselection principle in vertex operator algebra theory, J. Algebra, 1997, 196(2), 436–457 http://dx.doi.org/10.1006/jabr.1997.7126
[24] Meurman A., Primc M., Vertex operator algebras and representations of affine Lie algebras, Acta Appl. Math., 1996, 44(1–2), 207–215 http://dx.doi.org/10.1007/BF00116522
[25] Meurman A., Primc M., Annihilating Fields of Standard Modules of sl(2,ℂ)∼ and Combinatorial Identities, Mem. Amer. Math. Soc., 1999, 137, #652
[26] Primc M., Vertex operator construction of standard modules for A n(1), Pacific J. Math., 1994, 162(1), 143–187
[27] Primc M., Basic representations for classical affine Lie algebras, J. Algebra, 2000, 228(1), 1–50 http://dx.doi.org/10.1006/jabr.1999.7899
[28] Primc M., (k, r)-admissible configurations and intertwining operators, In: Lie Algebras, Vertex Operator Algebras and Their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 425–434 http://dx.doi.org/10.1090/conm/442/08540
[29] Stoyanovski A.V., Feigin B.L., Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funct. Anal. Appl., 1994, 28(1), 55–72 http://dx.doi.org/10.1007/BF01079010
[30] Trupčević G., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \( \widetilde{\mathfrak{s}\mathfrak{l}}(\ell + 1,\mathbb{C}) \) -modules, J. Algebra, 2009, 322(10), 3744–3774 http://dx.doi.org/10.1016/j.jalgebra.2009.07.024