Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
An equivariant degree is defined for equivariant completely continuous multivalued vector fields with compact convex values. Then it is applied to obtain a result on existence of solutions to a second order BVP for differential inclusions carrying some symmetries.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
2173-2186
Opis fizyczny
Daty
wydano
2012-12-01
online
2012-10-12
Twórcy
autor
- Faculty of Technical Physics and Applied Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
Bibliografia
- [1] Antonyan S.A., Balanov Z.I., Gel’man B.D., Bourgin-Yang-type theorem for a-compact perturbations of closed operators. Part I. The case of index theories with dimension property, Abstr. Appl. Anal., 2006, #78928
- [2] Balanov Z., Krawcewicz W., Rybicki S., Steinlein H., A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory Appl., 2010, 8(1), 1–74 http://dx.doi.org/10.1007/s11784-010-0033-9[Crossref][WoS]
- [3] Balanov Z., Krawcewicz W., Steinlein H., Applied Equivariant Degree, AIMS Ser. Differ. Equ. Dyn. Syst., 1, American Institute of Mathematical Sciences, Springfield, 2006
- [4] Borisovich Yu.G., Gel’man B.D., Myshkis A.D., Obukhovskii V.V., Introduction to the Theory of Multivalued Mappings and Differential Inclusions, URSS, Moscow, 2005 (in Russian)
- [5] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref]
- [6] Dzedzej Z., Kryszewski W., Selections and approximations of convex-valued equivariant mappings, Topol. Methods Nonlinear Anal. (in press)
- [7] Erbe L.H., Krawcewicz W., Nonlinear boundary value problems for differential inclusions y″ ∈ F(t, y, y′), Ann. Polon. Math., 1991, 54(3), 195–226
- [8] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer, Dordrecht-Boston-London, 1999
- [9] Granas A., Guenther R., Lee J., Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Math. (Rozprawy Mat.), 244, Polish Academy of Sciences, Warsaw, 1985
- [10] Hofmann K.H., Morris S.A., The Structure of Compact Groups, de Gruyter Stud. Math., 25, Walter de Gruyter, Berlin, 2006
- [11] Krawcewicz W., Wu J., Theory of Degrees with Applications to Bifurcations and Differential Equations, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1997
- [12] Michael E., Continuous selections I, Annals of Math., 1956, 63(2), 361–382 http://dx.doi.org/10.2307/1969615[Crossref]
- [13] Murayama M., On G-ANR’s and their G-homotopy types, Osaka J. Math., 1983, 20(3), 479–512
- [14] Pruszko T., Topological degree methods in multivalued boundary value problems, Nonlinear Anal., 1981, 5(9), 959–973 http://dx.doi.org/10.1016/0362-546X(81)90056-0[Crossref]
- [15] Pruszko T., Some Applications of the Topological Degree Theory to Multivalued Boundary Value Problems, Dissertationes Math. (Rozprawy Mat.), 229, Polish Academy of Sciences, Warsaw, 1984
- [16] Rudin W., Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-012-0099-2