Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 11 | 2 | 308-321

Tytuł artykułu

The structure of plane graphs with independent crossings and its applications to coloring problems

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ℈Δ/2⌊ if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.

Wydawca

Czasopismo

Rocznik

Tom

11

Numer

2

Strony

308-321

Daty

wydano
2013-02-01
online
2012-11-21

Bibliografia

  • [1] Akiyama J., Exoo G., Harary F., Covering and packing in graphs. III: Cyclic and acyclic invariants, Math. Slovaca, 1980, 30(4), 405–417
  • [2] Albertson M.O., Chromatic number, independence ratio, and crossing number, Ars Math. Contemp., 2008, 1(1), 1–6
  • [3] Bondy J.A., Murty U.S.R., Graph Theory with Applications, Elsevier, New York, 1976
  • [4] Borodin O.V., Solution of the Ringel problem on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Metody Diskret. Analiz., 1984, 41, 12–26
  • [5] Borodin O.V., A new proof of the 6-color theorem, J. Graph Theory, 1995, 19(4), 507–521 http://dx.doi.org/10.1002/jgt.3190190406
  • [6] Borodin O.V., Kostochka A.V., Woodall D.R., List edge and list total colorings of multigraphs, J. Combin. Theory Ser. B, 1997, 71(2), 184–204 http://dx.doi.org/10.1006/jctb.1997.1780
  • [7] Cygan M., Hou J.-F., Kowalik Ł., Lužar B., Wu J.-L., A planar linear arboricity conjecture, J. Graph Theory, 2012, 69(4), 403–425 http://dx.doi.org/10.1002/jgt.20592
  • [8] Erman R., Havet F., Lidický B., Pangrác O., 5-coloring graphs with 4 crossings, SIAM J. Discrete Math., 2011, 25(1), 401–422 http://dx.doi.org/10.1137/100784059
  • [9] Fabrici I., Madaras T., The structure of 1-planar graphs, Discrete Math., 2007, 307(7–8), 854–865 http://dx.doi.org/10.1016/j.disc.2005.11.056
  • [10] Jensen T.R., Toft B., Graph Coloring Problems, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, New York, 1995
  • [11] Král D., Stacho L., Coloring plane graphs with independent crossings, J. Graph Theory, 2010, 64(3), 184–205
  • [12] Li X., Average degrees of critical graphs, Ars Combin., 2005, 74, 303–322
  • [13] Pach J., Tóth G., Graphs drawn with few crossings per edge, Combinatorica, 1997, 17(3), 427–439 http://dx.doi.org/10.1007/BF01215922
  • [14] Ringel G., Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg, 1965, 29, 107–117 http://dx.doi.org/10.1007/BF02996313
  • [15] Sanders D.P., Zhao Y., On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory, 1999, 31(1), 67–73 http://dx.doi.org/10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C
  • [16] Sanders D.P., Zhao Y., Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B, 2001, 83(2), 201–212 http://dx.doi.org/10.1006/jctb.2001.2047
  • [17] Vizing V.G., Critical graphs with given chromatic class, Diskret. Analiz., 1965, 5, 9–17
  • [18] Wu J.-L., On the linear arboricity of planar graphs, J. Graph Theory, 1999, 31(2), 129–134 http://dx.doi.org/10.1002/(SICI)1097-0118(199906)31:2<129::AID-JGT5>3.0.CO;2-A
  • [19] Wu J., Wang P., List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math., 2008, 308(4), 6210–6215 http://dx.doi.org/10.1016/j.disc.2007.11.044
  • [20] Wu J.-L., Wu Y.-W., The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory, 2008, 58(3), 210–220 http://dx.doi.org/10.1002/jgt.20305
  • [21] Zhang X., Hou J., Liu G., On total colorings of 1-planar graphs, preprint available at http://xinzhang.hpage.com/get_file.php?id=1513981&vnr=342077
  • [22] Zhang X., Wu J.-L., On edge colorings of 1-planar graphs, Inform. Process. Lett., 2011, 111(3), 124–128 http://dx.doi.org/10.1016/j.ipl.2010.11.001
  • [23] Zhang X., Wu J., Liu G., List edge and list total coloring of 1-planar graphs, Front. Math. China (in press), DOI: 10.1007/s11464-012-0184-7

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0094-7