Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 10 | 5 | 1721-1732

Tytuł artykułu

Subtleties concerning conformal tractor bundles

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.

Wydawca

Czasopismo

Rocznik

Tom

10

Numer

5

Strony

1721-1732

Opis fizyczny

Daty

wydano
2012-10-01
online
2012-07-24

Twórcy

autor
  • University of Washington
  • The Australian National University

Bibliografia

  • [1] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333
  • [2] Čap A., Gover A.R., Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc., 2002, 354(4), 1511–1548 http://dx.doi.org/10.1090/S0002-9947-01-02909-9
  • [3] Čap A., Gover A.R., Standard tractors and the conformal ambient metric construction, Ann. Global Anal. Geom., 2003, 24(3), 231–259 http://dx.doi.org/10.1023/A:1024726607595
  • [4] Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J., 2000, 29(3), 453–505
  • [5] Čap A., Slovák J., Parabolic Geometries I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009
  • [6] Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math., 2001, 154(1), 97–113 http://dx.doi.org/10.2307/3062111
  • [7] Fefferman C., Graham C.R., Conformal invariants, In: The Mathematical Heritage of Élie Cartan, Lyon, 1984, Astérisque, 1985, Numero Hors Serie, 95–116
  • [8] Fefferman C., Graham C.R., The Ambient Metric, Ann. of Math. Stud., 178, Princeton University Press, Princeton, 2012
  • [9] Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split G 2, J. Diff. Geom. (in press), preprint available at http://arxiv.org/abs/1109.3504
  • [10] Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #081
  • [11] Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J., 1993, 22(3), 263–347
  • [12] Nurowski P., Differential equations and conformal structures, J. Geom. Phys., 2005, 55(1), 19–49 http://dx.doi.org/10.1016/j.geomphys.2004.11.006
  • [13] Sharpe R.W., Differential Geometry, Grad. Texts in Math., 166, Springer, New York, 1997
  • [14] Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 1979, 8(1), 23–84

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0093-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.