EN
An isotypic Kronecker web is a family of corank m foliations $\{ \mathcal{F}_t \} _{t \in \mathbb{R}P^1 } $ such that the curve of annihilators t ↦ (T x F t)⊥ ∈ Grm(T x* M) is a rational normal curve in the Grassmannian Grm(T x*M) at any point x ∈ M. For m = 1 we get Veronese webs introduced by I. Gelfand and I. Zakharevich [Gelfand I.M., Zakharevich I., Webs, Veronese curves, and bi-Hamiltonian systems, J. Funct. Anal., 1991, 99(1), 150–178]. In the present paper, we consider the problem of local classification of isotypic Kronecker webs and for a given web we construct a canonical connection. We compute the curvature of the connection in the case of webs of equal rank and corank. We also show the correspondence between Kronecker webs and systems of ODEs for which certain sets of differential invariants vanish. The equations are given up to contact transformations preserving independent variable. As a particular case, with m = 1 we obtain the correspondence between Veronese webs and ODEs.