Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 10 | 5 | 1789-1800
Tytuł artykułu

Foliations of lightlike hypersurfaces and their physical interpretation

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper deals with a family of lightlike (null) hypersurfaces (H u) of a Lorentzian manifold M such that each null normal vector ℓ of H u is not entirely in H u, but, is defined in some open subset of M around H u. Although the family (H u) is not unique, we show, subject to some reasonable condition(s), that the involved induced objects are independent of the choice of (H u) once evaluated at u = constant. We use (n+1)-splitting Lorentzian manifold to obtain a normalization of ℓ and a well-defined projector onto H, needed for Gauss, Weingarten, Gauss-Codazzi equations and calculate induced metrics on proper totally umbilical and totally geodesic H u. Finally, we establish a link between the geometry and physics of lightlike hypersurfaces and a variety of black hole horizons.
Opis fizyczny
  • University of Windsor
  • [1] Akivis M.A., Goldberg V.V., On some methods of construction of invariant normalizations of lightlike hypersurfaces, Differential Geom. Appl., 2000, 12(2), 121–143
  • [2] Arnowitt R., Deser S., Misner C.W., The dynamics of general relativity, In: Gravitation, Wiley, New York, 1962, 227–265
  • [3] Ashtekar A., Beetle C., Fairhurst S., Isolated horizons: a generalization of black hole mechanics, Classical Quantum Gravity, 1999, 16(2), L1–L7
  • [4] Ashtekar A., Galloway G.J., Some uniqueness results for dynamical horizons, Adv. Theor. Math. Phys., 2005, 9(1), 1–30
  • [5] Ashtekar A., Krishnan B., Dynamical horizons and their properties, Phys. Rev. D, 2003, 68(10), #104030
  • [6] Beem J.K., Ehrlich P.E., Global Lorentzian Geometry, Monogr. Textbooks Pure Appl. Math., 67, Marcel Dekker, New York, 1981
  • [7] Bejancu A., Duggal K.L., Degenerated hypersurfaces of semi-Riemannian manifolds, Bul. Inst. Politehn. Iaşi Secţ. I, 1991, 37(41)(1–4), 13–22
  • [8] Carter B., Extended tensorial curvature analysis for embeddings and foliations, In: Geometry and Nature, Madeira, July 30–August 5, 1995, Contemp. Math., 203, American Mathematical Society, Providence, 1997, 207–219
  • [9] Damour T., Black-hole eddy currents, Phys. Rev. D, 1978, 18(10), 3598–3604
  • [10] Duggal K.L., Bejancu A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Math. Appl., 364, Kluwer Academic, Dordrecht, 1996
  • [11] Duggal K.L., Jin D.H., Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Hackensack, 2007
  • [12] Galloway G.J., Maximum principles for null hypersurfaces and null splitting theorem, Ann. Henri Poincaré, 2000, 1(3), 543–567
  • [13] Gourgoulhon E., Jaramillo J.L., A 3 + 1-perspective on null hypersurfaces and isolated horizons, Phys. Rep., 2006, 423(4–5), 159–294
  • [14] Hawking S.W., Ellis G.F.R., The Large Scale Structure of Space-Time, Cambridge Monogr. Math. Phys., 1, Cambridge University Press, London-New York, 1973
  • [15] Kossowski M., The intrinsic conformal structure and Gauss map of a light-like hypersurface in Minkowski space, Trans. Amer. Math. Soc., 1989, 316(1), 369–383
  • [16] Krishnan B., Fundamental properties and applications of quasi-local black hole horizons, Classical Quantum Gravity, 2008, 25(11), #114005
  • [17] Kupeli D.N., Singular Semi-Riemannian Geometry, Math. Appl., 366, Kluwer, Dordrecht, 1996
  • [18] Lewandowski J., Spacetimes admitting isolated horizons, Classical Quantum Gravity, 2000, 17(4), L53–L59
  • [19] Swift S.T., Null limit of the Maxwell-Sen-Witten equation, Classical Quantum Gravity, 1992, 9(7), 1829–1838
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.