We characterize the Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains in terms of the Berezin transform.
[1] Abate M., Saracco A., Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains, J. London Math. Soc. (in press), DOI: 10.1112/jlms/jdq092
[2] Arazy J., Fisher S.D., Peetre J., Hankel operators on weighted Bergman spaces, Amer. J. Math., 1988, 110(6), 989–1053 http://dx.doi.org/10.2307/2374685
[3] Čučkovic Ž., Zhao R., Weighted composition operators on the Bergman space, J. London Math. Soc., 2004, 70(2), 499–511 http://dx.doi.org/10.1112/S0024610704005605
[4] Čučkovic Ž., Zhao R., Essential norm estimate of weighted composition operators between Bergman spaces on strongly pseudoconvex domains, Math. Proc. Cambridge Philos. Soc., 2007, 142(3), 525–533 http://dx.doi.org/10.1017/S0305004106009893
[6] Li S.-Y., Trace ideal criteria for composition operators on Bergman spaces, Amer. J. Math., 1995, 117(5), 1299–1323 http://dx.doi.org/10.2307/2374977
[7] Zhu K.H., Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory, 1988, 20(2), 329–357
[8] Zhu K.H., Operator Theory in Function Spaces, Monogr. Textbooks Pure Appl. Math., 139, Marecl Dekker, New York, 1990