Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2013 | 11 | 1 | 112-132

Tytuł artykułu

Properties of the set of positive solutions to Dirichlet boundary value problems with time singularities

Treść / Zawartość

Warianty tytułu

Języki publikacji



The paper investigates the structure and properties of the set S of all positive solutions to the singular Dirichlet boundary value problem u″(t) + au′(t)/t − au(t)/t 2 = f(t, u(t),u′(t)), u(0) = 0, u(T) = 0. Here a ∈ (−∞,−1) and f satisfies the local Carathéodory conditions on [0,T]×D, where D = [0,∞)×ℝ. It is shown that S c = {u ∈ S: u′(T) = −c} is nonempty and compact for each c ≥ 0 and S = ∪c≥0 S c. The uniqueness of the problem is discussed. Having a special case of the problem, we introduce an ordering in S showing that the difference of any two solutions in S c,c≥ 0, keeps its sign on [0,T]. An application to the equation v″(t) + kv′(t)/t = ψ(t)+g(t, v(t)), k ∈ (1,∞), is given.



  • [1] Abraham F.F., Homogeneous Nucleation Theory, Academic Press, New York, 1974
  • [2] Agarwal R.P., O’Regan D., Singular Differential and Integral Equations with Applications, Kluwer, Dordrecht, 2003
  • [3] Agarwal R.P., O’Regan D., A survey of recent results for initial and boundary value problems singular in the dependent variable, In: Handbook of Differential Equations, Elsevier/North Holland, Amsterdam, 2004, 1–68
  • [4] Bongiorno V., Scriven L.E., Davis H.T., Molecular theory of fluid interfaces, J. Colloid Interface Sci., 1976, 57(3), 462–475
  • [5] Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985
  • [6] Derrick G.H., Comments on nonlinear wave equations as models for elementary particles, J. Mathematical Phys., 1964, 5, 1252–1254
  • [7] Fife P.C., Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., 28, Springer, Berlin- New York, 1979
  • [8] Fischer R.A., The wave of advance of advantegeous genes, Annals of Eugenics, 1937, 7, 355–369
  • [9] Hammerling R., Koch O., Simon C., Weinmüller E.B., Numerical solution of singular ODE eigenvalue problems in electronic structure computations, Comput. Phys. Comm., 2010, 181, 1557–1561
  • [10] Hamydy A., Existence and uniqueness of nonnegative solutions for a boundary blow-up problem, J. Math. Anal. Appl., 2010, 371(2), 534–545
  • [11] Kalis H., Kangro I., Gedroics A., Numerical methods of solving some nonlinear heat transfer problems, Int. J. Pure Appl. Math., 2009, 57(4), 575–592
  • [12] Kiguradze I., Some Singular Boundary Value Problems for Ordinary Differential Equations, Izdat. Tbilis. Univ., Tbilisi, 1975 (in Russian)
  • [13] Kiguradze I.T., Shekhter B.L., Singular boundary value problems for second-order ordinary differential equations, J. Soviet Math., 1988, 43(2), 2340–2417
  • [14] Kitzhofer G., Koch O., Lima P., Weinmüller E., Efficient numerical solution of the density profile equation in hydrodynamics, J. Sci. Comput., 2007, 32(3), 411–424
  • [15] Koleva M., Vulkov L., Blow-up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type, J. Comput. Appl. Math., 2007, 202(2), 414–434
  • [16] Konyukhova N.B., Lima P.M., Morgado M.L., Soloviev M.B., Bubbles and droplets in nonlinear physics models: analysis and numerical simulation of singular nonlinear boundary value problems, Comput. Math. Math. Phys., 2008, 48(11), 2018–2058
  • [17] Kubo A., Lohéac J.-P., Existence and non-existence of global solutions to initial boundary value problems for nonlinear evolution equations with strong dissipation, Nonlinear Anal., 2009, 71(12), e2797–e2806
  • [18] Linde A.D., Particle physics and inflationary cosmology, Proceedings of the Fourth Seminar on Quantum Gravity, Moscow, May 25–29, 1987, World Scientific, Teaneck, 1988
  • [19] O’Regan D., Theory of Singular Boundary Value Problems, World Scientific, River Edge, 1994
  • [20] Rachůnková I., Staněk S., Tvrdý M., Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations. III, In: Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2006, 607–722
  • [21] Rachůnková I., Staněk S., Tvrdý M., Solvability of Nonlinear Singular Problems for Ordinary Differential Equations, Contemp. Math. Appl., 5, Hindawi, New York, 2008
  • [22] Rottschäfer V., Kaper T.J., Blowup in the nonlinear Schrödinger equation near critical dimension, J. Math. Anal. Appl., 2002, 268(2), 517–549
  • [23] Sibley L., Armbruster D., Gouin H., Rotoli G., An analytical approximation of density profile and surface tension of microscopic bubbles for van der Waals fluids, Mech. Res. Comm., 1997, 24(3), 255–260
  • [24] van der Waals J.D., Kohnstamm R., Lehrbuch der Thermodynamik. I, Maas & van Suchtelen, Leipzig-Amsterdam, 1908

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.