Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 11 | 1 | 133-148
Tytuł artykułu

Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations

Treść / Zawartość
Warianty tytułu
Języki publikacji
On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.
Opis fizyczny
  • [1] Baran H., Marvan M., On integrability of Weingarten surfaces: a forgotten class, J. Phys. A, 2009, 42(40), #404007
  • [2] Baran H., Marvan M., Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation, Nonlinearity, 2010, 23(10), 2577–2597
  • [3] Bianchi L., Lezioni di Geometria Differenziale, Spoerri, Pisa, 1894
  • [4] Bianchi L., Vorlesungen über Differentialgeometrie, Teubner, Leipzig, 1899
  • [5] Buyske S.G., Bäcklund transformations of linear Weingarten surfaces in Minkowski three-space, J. Math. Phys., 1994, 35(9), 4719–4724
  • [6] Cieśliński J., A generalized formula for integrable classes of surfaces in Lie algebras, J. Math. Phys., 1997, 38(8), 4255–4272
  • [7] Eisenhart L.P., A Treatise in the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston-New York-Chicago-London, 1909
  • [8] Fokas A.S., Gelfand I.M., Surfaces on Lie groups, on Lie algebras, and their integrability, Comm. Math. Phys., 1996, 177(1), 203–220
  • [9] Fokas A.S., Gel’fand I.M., Finkel F., Liu Q.M., A formula for constructing infinitely many surfaces on Lie algebras and integrable equations, Selecta Math., 2000, 6(4), 347–375
  • [10] Ganchev G., Mihova V., On the invariant theory of Weingarten surfaces in Euclidean space, J. Phys. A, 2010, 43(40), #405210
  • [11] Ganchev G., Mihova V., Natural PDE’s of linear fractional Weingarten surfaces in Euclidean space, preprint available at
  • [12] Hu H.S., The construction of hyperbolic surfaces in 3-dimensional Minkowski space and sinh-Laplace equation, Acta Math. Sinica, 1985, 1(1), 79–86
  • [13] Hu H., Darboux transformations between Δα = sinh α and Δα = sin α and the application to pseudo-spherical congruences in ℝ 12, Lett. Math. Phys., 1999, 48(2), 187–195
  • [14] Lie S., Ueber Flächen, deren Krümmungsradien durch eine Relation verknüpft sind, Archiv for Mathematik og Naturvidenskab, 4, 1879, 507–512
  • [15] v. Lilienthal R., Bemerkung über diejenigen Flächen, bei denen die Differenz der Hauptkrümmungen constant ist, Acta Math., 1887, 11(1–4), 391–394
  • [16] v. Lilienthal R., Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 3 - Geometrie, 3. Teil, D. Differentialgeometrie, 5. Besondere Flächen, Teubner, Leipzig, 1902/1903
  • [17] Lund F., Regge T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D, 1976, 14(6), 1524–1535
  • [18] Milnor T.K., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J., 1983, 30(3), 309–315
  • [19] Ribaucour M., A note on the evolution of surfaces, C. R. Acad. Sci. Paris Sér., 1872, 64, 1399–1403 (in French)
  • [20] Sym A., Soliton surfaces and their applications (soliton geometry from spectral problems), In: Geometric Aspects of the Einstein Equations and Integrable Systems, Scheveningen, August 26–31, 1984, Lecture Notes in Phys., 239, Springer, Berlin-Heidelberg, 1985, 154–231
  • [21] Weingarten J., Ueber die Oberflächen, für welche einer der beiden Hauptkrümmungshalbmesser eine Funktion des anderen ist, J. Reine Angew. Math., 1863, 62, 160–173
  • [22] Weingarten J., Ueber eine Eigenschaft der Flächen, bei denen der eine Hauptkrümmungsradius eine Funktion des anderen ist, J. Reine Angew. Math., 1888, 103, 184
  • [23] Wu H., Weingarten surfaces and nonlinear partial differential equations, Ann. Global Anal. Geom., 1993, 11(1), 49–64
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.