EN
Let X be a completely regular Hausdorff space, $$\mathfrak{S}$$ a cover of X, and $$C_b (X,\mathbb{K};\mathfrak{S})$$ the algebra of all $$\mathbb{K}$$ -valued continuous functions on X which are bounded on every $$S \in \mathfrak{S}$$ . A description of quotient algebras of $$C_b (X,\mathbb{K};\mathfrak{S})$$ is given with respect to the topologies of uniform and strict convergence on the elements of $$\mathfrak{S}$$ .