EN
We study the representation theory of the solution space of the one-dimensional Schrödinger equation with singular potential V λ(x) = λx −2 as a representation of $\widetilde{SL(2,\mathbb{R})}$ . The subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. By studying the subspace of K-finite vectors in this space, a distinguished family of potentials, parametrized by the triangular numbers is shown to generate a global representation of $\widetilde{SL(2,\mathbb{R})}$ ⋉ H 3, where H 3 is the three-dimensional Heisenberg group.