EN
If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity constant of cubic graphs (graphs with all of their vertices of degree 3), and prove that for any graph G with bounded degree there exists a cubic graph G* such that G is hyperbolic if and only if G* is hyperbolic. Moreover, we prove that for any cubic graph G with n vertices, we have δ(G) ≤ min {3n/16 + 1; n/4}. We characterize the cubic graphs G with δ(G) ≤ 1. Besides, we prove some inequalities involving the hyperbolicity constant and other parameters for cubic graphs.