PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 3 | 1084-1102
Tytuł artykułu

Cauchy problem for a class of parabolic systems of Shilov type with variable coefficients

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the case of initial data belonging to a wide class of functions including distributions of Gelfand-Shilov type we establish the correct solvability of the Cauchy problem for a new class of Shilov parabolic systems of equations with partial derivatives with bounded smooth variable lower coefficients and nonnegative genus. We also investigate the conditions of local improvement of the convergence of a solution of this problem to its limiting value when the time variable tends to zero.
Twórcy
Bibliografia
  • [1] Gel’fand I.M., Shilov G.E., Generalized Functions. 3, Academic Press, New York-London, 1967
  • [2] Gel’fand I.M., Shilov G.E. Generalized Functions. 2, Academic Press, New York-London, 1968
  • [3] Gorodetskii V.V., Localization principle for solutions of the Cauchy problem for parabolic systems in the class of generalized functions of infinite order, Differ. Uravn., 1985, 21(6), 1077–1079 (in Russian)
  • [4] Khou-sin’ U., On the definition of parabolic systems of partial differential equations, Uspekhi Mat. Nauk, 1960, 15(6), 157–161 (in Russian)
  • [5] Litovchenko V.A., Dovzhitska I.M., The fundamental matrix of solutions of the Cauchy problem for a class of parabolic systems of the Shilov type with variable coefficients, J. Math. Sci., 2011, 175(4), 450–476 http://dx.doi.org/10.1007/s10958-011-0356-0
  • [6] Zhitomirskii Ya.I., The Cauchy problem for certain types of systems, parabolic in the sense of G.E. Shilov, of linear partial differential equations with variable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 1959, 23, 925–932 (in Russian)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-012-0025-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.