Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 10 | 3 | 1133-1140

Tytuł artykułu

Hypergraphs with large transversal number and with edge sizes at least four

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Let H be a hypergraph on n vertices and m edges with all edges of size at least four. The transversal number τ(H) of H is the minimum number of vertices that intersect every edge. Lai and Chang [An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133] proved that τ(H) ≤ 2(n+m)/9, while Chvátal and McDiarmid [Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26] proved that τ(H) ≤ (n + 2m)/6. In this paper, we characterize the connected hypergraphs that achieve equality in the Lai-Chang bound and in the Chvátal-McDiarmid bound.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

10

Numer

3

Strony

1133-1140

Daty

wydano
2012-06-01
online
2012-03-24

Twórcy

  • University of Johannesburg
  • University of Johannesburg

Bibliografia

  • [1] Chvátal V., McDiarmid C., Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26 http://dx.doi.org/10.1007/BF01191201
  • [2] Henning M.A., Yeo A., Hypergraphs with large transversal number and with edge sizes at least 3, J. Graph Theory, 2008, 59(4), 326–348
  • [3] Lai F.C., Chang G.J., An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133 http://dx.doi.org/10.1016/0095-8956(90)90101-5
  • [4] Thomassé S., Yeo A., Total domination of graphs and small transversals of hypergraphs, Combinatorica, 2007, 27(4), 473–487 http://dx.doi.org/10.1007/s00493-007-2020-3
  • [5] Tuza Zs., Covering all cliques of a graph, Discrete Math., 1990, 86(1–3), 117–126 http://dx.doi.org/10.1016/0012-365X(90)90354-K
  • [6] Yeo A., private communication

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0023-9