Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 10 | 3 | 1042-1053

Tytuł artykułu

Equiconnected spaces and Baire classification of separately continuous functions and their analogs

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigate the Baire classification of mappings f: X × Y → Z, where X belongs to a wide class of spaces which includes all metrizable spaces, Y is a topological space, Z is an equiconnected space, which are continuous in the first variable. We show that for a dense set in X these mappings are functions of a Baire class α in the second variable.

Wydawca

Czasopismo

Rocznik

Tom

10

Numer

3

Strony

1042-1053

Opis fizyczny

Daty

wydano
2012-06-01
online
2012-03-24

Twórcy

  • Chernivtsi National University
  • Chernivtsi National University
  • Chernivtsi National University

Bibliografia

  • [1] Banakh T.O., (Metrically) quarter-stratifiable spaces and their applications, Mat. Stud., 2002, 18(1), 10–28
  • [2] Burke M.R., Borel measurability of separately continuous functions, Topology Appl., 2003, 129(1), 29–65 http://dx.doi.org/10.1016/S0166-8641(02)00136-0
  • [3] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
  • [4] Engelking R., Theory of Dimensions, Finite and Infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995
  • [5] Hahn H., Reelle Funktionen. I: Punktfunktionen, Mathematik und ihre Anwendungen in Monographien und Lehrbüchern, 13, Leipzig, Academische Verlagsgesellscheft, 1932
  • [6] Kalancha A.K., Maslyuchenko V.K., The Lebesgue-Čech dimension and Baire classification of vector-valued separately continuous mappings, Ukraïn. Mat. Zh., 2003, 55(11), 1576–1579 (in Ukrainian)
  • [7] Karlova O., Baire classification of mappings which are continuous in the first variable and of the functional class α in the second one, Matematychny Visnyk NTSH, 2005, 2, 98–114 (in Ukrainian)
  • [8] Lebesgue H., Sur l’approximation des fonctions, Bull. Sci. Math., 1898, 22, 278–287
  • [9] Moran W., Separate continuity and supports of measures, J. London Math. Soc., 1969, 44, 320–324 http://dx.doi.org/10.1112/jlms/s1-44.1.320
  • [10] Mykhaylyuk V.V., Baire classification of separately continuous functions and the Namioka property, Ukr. Mat. Visn., 2008, 5(2), 203–218 (in Ukrainian)
  • [11] Rudin W., Lebesgue’s first theorem, In: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud., 7b, Academic Press, New York-London, 1981, 741–747
  • [12] Sobchuk O.V., Baire classification and Lebesgue spaces, Naukovij Visnik Cernivec’kogo Universitetu, Matematika, 2001, 111, 110–112 (in Ukranian)
  • [13] Sobchuk O.V., PP-spaces and Baire classification, In: Book of abstracts of the International Conference on Functional Analysis and its Applications dedicated to the 110th anniversary of Stefan Banach, Lvov, May 28–31, 2002, Ivano Franko National University, Lvov, 2002, 189
  • [14] Vera G., Baire measurability of separately continuous functions, Quart. J. Math. Oxford, 1988, 39(153), 109–116 http://dx.doi.org/10.1093/qmath/39.1.109

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0016-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.