We review a construction of Ellingsrud-Strømme relating instantons of charge n on the ordinary projective space and theta-characteristics on a plane curve of degree n with some extra-structure.
[1] Barth W., Moduli of vector bundles on the projective plane, Invent. Math., 1977, 42, 63–91 http://dx.doi.org/10.1007/BF01389784
[2] Barth W., Some properties of stable rank-2 vector bundles on ℙn, Math. Ann., 1977, 226(2), 125–150 http://dx.doi.org/10.1007/BF01360864
[3] Böhmer W., Trautmann G., Special instanton bundles and Poncelet curves, In: Singularities, Representation of Algebras and Vector Bundles, Lambrecht, December 13–17, 1985, Lecture Notes in Math., 1273, Springer, Berlin, 1987, 325–336 http://dx.doi.org/10.1007/BFb0078852
[4] Ellingsrud G., Strømme S.A., Stable rank-2 vector bundles on ℙ3 with c 1 = 0 and c 2 = 3, Math. Ann., 1981, 255(1), 123–135 http://dx.doi.org/10.1007/BF01450561
[5] Gruson L., Skiti M., 3-instantons et réseaux de quadriques, Math. Ann., 1994, 298(2), 253–273 http://dx.doi.org/10.1007/BF01459736
[6] Han F., Codimension du schéma des multisauteuses d’un 4- ou 5-instanton, PhD thesis, Université de Lille 1, 1996
[7] Landsberg J.M., Manivel L., Generalizations of Strassen’s equations for secant varieties of Segre varieties, Comm. Algebra, 2008, 36(2), 405–422 http://dx.doi.org/10.1080/00927870701715746
[8] Macdonald I.G., Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., Clarendon Press, Oxford University Press, New York, 1995
[9] Ottaviani G., Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited, In: Vector Bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments, Povo-Trento, September 11–16, 2006, Quad. Mat., 21, Seconda Università degli Studi di Napoli, Caserta, 2007, 315–352
[10] Sorger C., Thêta-caractéristiques des courbes tracées sur une surface lisse, J. Reine Angew. Math., 1993, 435, 83–118
[11] Tjurin A.N., On the superpositions of mathematical instantons, In: Arithmetic and Geometry. II, Progr. Math., 36, Birkhäuser, Boston, 1983, 433–450
[12] Vallès J., Fibrés de Schwarzenberger et coniques de droites sauteuses, Bull. Soc. Math. France, 2000, 128(3), 433–449
[13] Weyman J., Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Math., 149, Cambridge University Press, Cambridge, 2003 http://dx.doi.org/10.1017/CBO9780511546556