PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 3 | 1159-1171
Tytuł artykułu

A new conservative finite difference scheme for Boussinesq paradigm equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A family of nonlinear conservative finite difference schemes for the multidimensional Boussinesq Paradigm Equation is considered. A second order of convergence and a preservation of the discrete energy for this approach are proved. Existence and boundedness of the discrete solution on an appropriate time interval are established. The schemes have been numerically tested on the models of the propagation of a soliton and the interaction of two solitons. The numerical experiments demonstrate that the proposed family of schemes is about two times more accurate than the family of schemes studied in [Kolkovska N., Two families of finite difference schemes for multidimensional Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Sozopol, June 21–26, 2010, AIP Conf. Proc., 1301, American Institute of Physics, Melville, 2010, 395–403].
Wydawca
Czasopismo
Rocznik
Tom
10
Numer
3
Strony
1159-1171
Opis fizyczny
Daty
wydano
2012-06-01
online
2012-03-24
Twórcy
Bibliografia
  • [1] Abassy T.A., Improved Adomian decomposition method, Comput. Math. Appl., 2010, 59(1), 42–54 http://dx.doi.org/10.1016/j.camwa.2009.06.009
  • [2] Abrashin V.N., Stable difference schemes for quasilinear equations of mathematical physics, Differentsial’nye Uravneniya, 1982, 18(11), 1967–1971 (in Russian)
  • [3] Agarwal R.P., Difference Equations and Inequalities, 2nd ed., Monogr. Textbooks Pure Appl. Math., 228, Marcel Dekker, New York, 2000
  • [4] Bogolubsky I.L., Some examples of inelastic soliton interaction, Comput. Phys. Comm., 1977, 13(3), 149–155 http://dx.doi.org/10.1016/0010-4655(77)90009-1
  • [5] Bratsos A.G., A predictorçorrector scheme for the improved Boussinesq equation, Chaos Solitons Fractals, 2009, 40(5), 2083–2094 http://dx.doi.org/10.1016/j.chaos.2007.09.083
  • [6] Chertock A., Christov C.I., Kurganov A., Central-upwind schemes for the Boussinesq paradigm equations, In: Computational Science and High Performance Computing IV, Freiburg, October 12–16, 2009, Notes Numer. Fluid Mech. Multidiscip. Des., 115, Springer, Berlin-Heidelberg, 2011, 267–281
  • [7] Choo S.M., Pseudospectral method for the damped Boussinesq equation, Commun. Korean Math. Soc., 1998, 13(4), 889–901
  • [8] Choo S.M., Chung S.K., Numerical solutions for the damped Boussinesq equation by FD-FFT-perturbation method, Comput. Math. Appl., 2004, 47(6–7), 1135–1140 http://dx.doi.org/10.1016/S0898-1221(04)90093-4
  • [9] Christou M.A., Christov C.I., Galerkin spectral method for the 2D solitary waves of Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Sozopol, June 22–27, 2009, AIP Conf. Proc., 1186, American Institute of Physics, Melville, 2009, 217–225
  • [10] Christov C.I., Conservative difference scheme for Boussinesq model of surface waves, In: Proc. ICFD V, Oxford University Press, Oxford, 1996, 343–349
  • [11] Christov C.I., An energy-consistent dispersive shallow-water model, Wave Motion, 2001, 34(2), 161–174 http://dx.doi.org/10.1016/S0165-2125(00)00082-2
  • [12] Christov C.I., Kolkovska N., Vasileva D., On the numerical simulation of unsteady solutions for the 2D Boussinesq paragigm equation, In: Numerical Methods and Applications, Borovets, August 20–24, 2010, Lecture Notes in Comput. Sci., 6046, Springer, Berlin-Heidelberg, 2011, 386–394
  • [13] Christov C.I., Velarde M.G., Inelastic interaction of Boussinesq solitions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1994, 4(5), 1095–1112 http://dx.doi.org/10.1142/S0218127494000800
  • [14] Dimova M., Kolkovska N., Comparison of some finite difference schemes for Boussinesq paradigm equation, In: Lecture Notes in Comput. Sci. (in press)
  • [15] El-Zoheiry H., Numerical study of the improved Boussinesq equation, Chaos Solitons Fractals, 2002, 14(3), 377–384 http://dx.doi.org/10.1016/S0960-0779(00)00271-X
  • [16] de Frutos J., Ortega T., Sanz-Serna J.M., Pseudospectral method for the ”good” Boussinesq equation, Math. Comp., 1991, 57(195), 109–122
  • [17] Kolkovska N., Two families of finite difference schemes for multidimensional Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Sozopol, June 21–26, 2010, AIP Conf. Proc., 1301, American Institute of Physics, Melville, 2010, 395–403
  • [18] Kolkovska N., Convergence of finite difference schemes for a multidimensional Boussinesq equation, In: Numerical Methods and Applications, Borovets, August 20–24, 2010, Lecture Notes in Comput. Sci., 6046, Springer, Berlin-Heidelberg, 2011, 469–476
  • [19] Kutev N., Kolkovska N., Dimova M., Christov C.I., Theoretical and numerical aspects for global existence and blow up for the solutions to Boussinesq paradigm equation, In: Application of Mathematics in Technical and Natural Sciences, Albena, June 20–25, 2011, AIP Conf. Proc., 1404, American Institute of Physics, Melville, 2011, 68–76
  • [20] Manoranjan V.S., Mitchell A.R., Morris J.Ll., Numerical solutions of the good Boussinesq equation, SIAM J. Sci. Statist. Comput., 1984, 5(4), 946–957 http://dx.doi.org/10.1137/0905065
  • [21] Matus P., Lemeshevsky S., Kandratsiuk A., Well-posedness and blow-up for IBVP for semilinear parabolic equations and numerical methods, Comput. Methods Appl. Math., 2010, 10(4), 395–420
  • [22] Mokin Yu.I., Class-preserving continuation of mesh functions, U.S.S.R. Comput. Math. and Math. Phys., 12(4), 1972, 19–35 http://dx.doi.org/10.1016/0041-5553(72)90112-7
  • [23] Ortega T., Sanz-Serna J.M., Nonlinear stability and convergence of finite-difference methods for the ”good” Boussinesq equation, Numer. Math., 1990, 58(2), 215–229 http://dx.doi.org/10.1007/BF01385620
  • [24] Pani A.K., Saranga H., Finite element Galerkin method for the ”good” Boussinesq equation, Nonlinear Anal., 1997, 29(8), 937–956 http://dx.doi.org/10.1016/S0362-546X(96)00093-4
  • [25] Polat N., Ertaş A., Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl., 2009, 349(1), 10–20 http://dx.doi.org/10.1016/j.jmaa.2008.08.025
  • [26] Wang S., Chen G., Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 2006, 64(1), 159–173 http://dx.doi.org/10.1016/j.na.2005.06.017
  • [27] Wazwaz A.-M., New travelling wave solutions to the Boussinesq and the Kleinç-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 2008, 13, 889–901 http://dx.doi.org/10.1016/j.cnsns.2006.08.005
  • [28] Xu R., Liu Y., Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations, J. Math. Anal. Appl., 2009, 359(2), 739–751 http://dx.doi.org/10.1016/j.jmaa.2009.06.034
  • [29] Xu R., Liu Y., Yu T., Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal., 2009, 71(10), 4977–4983 http://dx.doi.org/10.1016/j.na.2009.03.069
  • [30] Yan Z., Bluman G., New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations, Comput. Phys. Comm., 2002, 149(1), 11–18 http://dx.doi.org/10.1016/S0010-4655(02)00587-8
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-012-0011-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.