EN
For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act irreducibly on ℝp+1,q+1. For the rest, we show that they must be compact and act decomposably on ℝp+1,q+1, in particular, by known facts about conformal holonomy the conformal class [g] must contain a metric which is either Einstein (if p = 0 or q = 0) or locally isometric to a so-called special Einstein product.