In this article, we survey recent work on the construction and geometry of representations of a quiver in the category of coherent sheaves on a projective algebraic manifold. We will also prove new results in the case of the quiver • ← • → •.
[1] Alper J., Good moduli spaces for Artin stacks, preprint available at http://arxiv.org/abs/0804.2242
[2] Álvarez-Cónsul L., Some results on the moduli spaces of quiver bundles, Geom. Dedicata, 2009, 139, 99–120 http://dx.doi.org/10.1007/s10711-008-9327-0
[4] Álvarez-Cónsul L., García-Prada O., Dimensional reduction and quiver bundles, J. Reine Angew. Math., 2003, 556, 1–46 http://dx.doi.org/10.1515/crll.2003.021
[5] Álvarez-Cónsul L., García-Prada O., Schmitt A.H.W., On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces, IMRP Int. Math. Res. Pap., 2006, #73597
[6] Álvarez-Cónsul L., King A.D., A functorial construction of moduli of sheaves, Invent. Math., 2007, 168(3), 613–666 http://dx.doi.org/10.1007/s00222-007-0042-5
[7] Assem I., Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras. I, London Math. Soc. Stud. Texts, 65, Cambridge University Press, Cambridge, 2006
[8] Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 1983, 308(1505), 523–615 http://dx.doi.org/10.1098/rsta.1983.0017
[9] Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Yu.I., Construction of instantons, Phys. Lett. A, 1978, 65(3), 185–187 http://dx.doi.org/10.1016/0375-9601(78)90141-X
[17] Frenkel I.B., Jardim M., Complex ADHM equations and sheaves on ℙ3, J. Algebra, 2008, 319(7), 2913–2937 http://dx.doi.org/10.1016/j.jalgebra.2008.01.016
[18] García-Prada O., Moduli spaces and geometric structures, Appendix to: Wells R.O., Differential Analysis on Complex Manifolds, 3rd ed., Grad. Texts in Math., 65, Springer, New York, 2008, 241–283
[19] García-Prada O., Heinloth J., Schmitt A., On the motives of moduli of chains and Higgs bundles, preprint available at http://arxiv.org/abs/1104.5558
[20] Ginzburg V., The global nilpotent variety is Lagrangian, Duke Math. J., 2001, 109(3), 511–519 http://dx.doi.org/10.1215/S0012-7094-01-10933-2
[21] Gothen P.B., The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface, Internat. J. Math., 1994, 5(6), 861–875 http://dx.doi.org/10.1142/S0129167X94000449
[22] Gothen P.B., King A.D., Homological algebra of twisted quiver bundles, J. London Math. Soc., 2005, 71(1), 85–99 http://dx.doi.org/10.1112/S0024610704005952
[23] Harder G., Narasimhan M.S., On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 1975, 212(3), 215–248 http://dx.doi.org/10.1007/BF01357141
[24] Hausel T., Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve, In: Geometric Methods in Algebra and Number Theory, Miami, December 16–20, 2003, Progr. Math., 235, Birkhäuser, Boston, 2005, 193–217 http://dx.doi.org/10.1007/0-8176-4417-2_9
[25] Hausel T., Rodriguez-Villegas F., Mixed Hodge polynomials of character varieties, Invent. Math., 2008, 174(3), 555–624 http://dx.doi.org/10.1007/s00222-008-0142-x
[26] Hausel T., Thaddeus M., Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math., 2003, 153(1), 197–229 http://dx.doi.org/10.1007/s00222-003-0286-7
[27] Hauzer M., Langer A., Moduli spaces of framed perverse instantons on ℙ3, Glasg. Math. J., 2011, 53(1), 51–96 http://dx.doi.org/10.1017/S0017089510000558
[28] Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc., 1987, 55(1), 59–126 http://dx.doi.org/10.1112/plms/s3-55.1.59
[29] Huybrechts D., Lehn M., The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010 http://dx.doi.org/10.1017/CBO9780511711985
[30] Jardim M., Miró-Roig R.M., On the semistability of instanton sheaves over certain projective varieties, Comm. Algebra, 2008, 36(1), 288–298 http://dx.doi.org/10.1080/00927870701665503
[31] King A.D., Moduli of representations of finite-dimensional algebras, Q. J. Math., 1994, 45(180), 515–530 http://dx.doi.org/10.1093/qmath/45.4.515
[32] Lang S., Algebra, 3rd rev. ed., Grad. Texts in Math., 211, Springer, New York, 2002 http://dx.doi.org/10.1007/978-1-4613-0041-0
[33] Laudin A., Über die Geometrie der Modulräume von 3-er-Casimiten über einer kompakten Riemannschen Fläche vom Geschlecht g ≥ 2, Diploma thesis, Berlin, 2011
[34] Laumon G., Un analogue global du cône nilpotent, Duke Math. J., 1988, 57(2), 647–671 http://dx.doi.org/10.1215/S0012-7094-88-05729-8
[35] Le Bruyn L., Procesi C., Semisimple representations of quivers, Trans. Amer. Math. Soc., 1990, 317(2), 585–598 http://dx.doi.org/10.2307/2001477
[36] Le Potier J., À propos de la construction de l’espace de modules des faisceaux semi-stables sur le plan projectif, Bull. Soc. Math. France, 1994, 122(3), 363–369
[43] Rudakov A., Stability for an abelian category, J. Algebra, 1997, 197(1), 231–245 http://dx.doi.org/10.1006/jabr.1997.7093
[44] Schmitt A., Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci., 2005, 115(1), 15–49 http://dx.doi.org/10.1007/BF02829837
[45] Schmitt A.H.W., Geometric Invariant Theory and Decorated Principal Bundles, Zur. Lect. Adv. Math., European Mathematical Society, Zürich, 2008
[46] Schmitt A.H.W., A remark on semistability of quiver bundles, Eurasian Math. J. (in press)
[47] Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math., 1994, 79, 47–129 http://dx.doi.org/10.1007/BF02698887
[48] Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras. II, London Math. Soc. Stud. Texts, 71, Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511619403
[49] Thaddeus M., Stable pairs, linear systems and the Verlinde formula, Invent. Math., 1994, 117(2), 317–353 http://dx.doi.org/10.1007/BF01232244