PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 2 | 543-558
Tytuł artykułu

On parabolic Whittaker functions II

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a Givental-type stationary phase integral representation for the restricted Grm,N-Whittaker function, which is expected to describe the (S 1×U N)-equivariant Gromov-Witten invariants of the Grassmann variety Grm,N. Our key tool is a generalization of the Whittaker model for principal series U(gl N)-modules, and its realization in the space of functions of totally positive unipotent matrices. In particular, our construction involves a representation theoretic derivation of the Batyrev-Ciocan-Fontanine-Kim-van Straten toric degeneration of Grm,N.
Twórcy
Bibliografia
  • [1] Astashkevich A., Sadov V., Quantum cohomology of partial flag manifolds \(F_{n_1 ,...,n_k } \) , Comm. Math. Phys., 1995, 170(3), 503–528 http://dx.doi.org/10.1007/BF02099147
  • [2] Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nuclear Phys. B, 1998, 514(3), 640–666 http://dx.doi.org/10.1016/S0550-3213(98)00020-0
  • [3] Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math., 2000, 184(1), 1–39 http://dx.doi.org/10.1007/BF02392780
  • [4] Gerasimov A., Kharchev S., Lebedev D., Oblezin S., On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Not., 2006, #96489
  • [5] Gerasimov A., Lebedev D., Oblezin S., Parabolic Whittaker functions and topological field theories I, Commun. Number Theory Phys., 2011, 5(1), 135–201
  • [6] Gerasimov A., Lebedev D., Oblezin S., New integral representations of Whittaker fucntions for classical Lie groups, preprint available at http://arxiv.org/abs/0705.2886
  • [7] Givental A.B., Homological geometry and mirror symmetry, In: Proceedings of the International Congress of Mathematicians, Zürich, August 3–11, 1994, Birkhäuser, Basel, 1995, 472–480
  • [8] Givental A., Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, In: Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, American Mathematical Society, Providence, 1997, 103–115
  • [9] Givental A., Kim B., Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys., 1995, 168(3), 609–641 http://dx.doi.org/10.1007/BF02101846
  • [10] Kim B., Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices, 1995, 1, 1–15 http://dx.doi.org/10.1155/S1073792895000018
  • [11] Lustzig G., Total positivity in reductive groups, In: Lie Theory and Geometry, Progr. Math., 123, Birkhäuser, Boston, 1994, 531–568
  • [12] Oblezin S., On parabolic Whittaker functions, preprint available at http://arxiv.org/abs/1011.4250
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0129-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.