PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 1 | 188-203
Tytuł artykułu

Computation of the fundamental solution of electrodynamics for anisotropic materials

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform. Applying the suggested approach, the fundamental solution components are computed in general anisotropic media. Computational examples confirm robustness of the suggested method.
Twórcy
Bibliografia
  • [1] Burridge R., Qian J., The fundamental solution of the time-dependent system of crystal optics, European J. Appl. Math., 2006, 17(1), 63–94 http://dx.doi.org/10.1017/S0956792506006486
  • [2] Cohen G.C., Higher-Order Numerical Methods for Transient Wave Equations, Sci. Comput., Springer, Berlin, 2002
  • [3] Cohen G.C., Heikkola E., Joly P., Neittaanmäki P. (Eds.), Mathematical and Numerical Aspects of Waves Propagation, Jyväskylä, June 30–July 4, 2003, Springer, Berlin, 2003
  • [4] Cottis P.G., Kondylis G.D., Properties of the dyadic Green’s function for an unbounded anisotropic medium, IEEE Trans. Antennas and Propagation, 1995, 43(2), 154–161 http://dx.doi.org/10.1109/8.366377
  • [5] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. 2: Partial Differential Equations, Interscience, New York-London, 1962
  • [6] Degerfeldt D., Rylander T., A brick-tetrahedron finite-element interface with stable hybrid explicit-implicit timestepping for Maxwell’s equations, J. Comput. Phys., 2006, 220(1), 383–393 http://dx.doi.org/10.1016/j.jcp.2006.05.016
  • [7] Dmitriev V.I., Silkin A.N., Farzan R., Tensor Green function for the system of Maxwell’s equations in a layered medium, Comput. Math. Model., 2002, 13(2), 107–118 http://dx.doi.org/10.1023/A:1015253228544
  • [8] Dolgaev S.I., Lyalin A.A., Simakin A.V., Shafeev G.A., Fast etching of sapphire by a visible range quasi-cw laser radiation, Applied Surface Science, 1996, 96–98, 491–495 http://dx.doi.org/10.1016/0169-4332(95)00501-3
  • [9] Haba Z., Green functions and propagation of waves in strongly inhomogeneous media, J. Phys. A, 2004, 37(39), 9295–9302 http://dx.doi.org/10.1088/0305-4470/37/39/015
  • [10] Hesthaven J.S., Warburton T., Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 2002, 181(1), 186–221 http://dx.doi.org/10.1006/jcph.2002.7118
  • [11] Kong J.A., Electromagnetic Wave Theory, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1986
  • [12] Li L.-W., Liu S., Leong M.-S., Yeo T.-S., Circular cylindrical waveguide filled with uniaxial anisotropic media electromagnetic fields and dyadic Green’s functions, IEEE Trans. Microwave Theory Tech., 2001, 49(7), 1361–1364 http://dx.doi.org/10.1109/22.932239
  • [13] Ludwig D., Conical refraction in crystal optics and hydromagnetics, Comm. Pure Appl. Math., 1961, 14(2), 113–124 http://dx.doi.org/10.1002/cpa.3160140203
  • [14] Melrose R.B., Uhlmann G.A., Microlocal structure of involutive conical refraction, Duke Math. J., 1979, 46(3), 571–582 http://dx.doi.org/10.1215/S0012-7094-79-04630-1
  • [15] Monk P., Finite Element Methods for Maxwell’s Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003
  • [16] Ortner N., Wagner P., Fundamental matrices of homogeneous hyperbolic systems. Applications to crystal optics, elastodynamics, and piezoelectromagnetism, ZAMM Z. Angew. Math. Mech., 2004, 84(5), 314–346 http://dx.doi.org/10.1002/zamm.200310130
  • [17] Reed M., Simon B., Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975
  • [18] Taflove A., Hagness S.C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, 2000
  • [19] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Macmillan, New York, 1963
  • [20] Uhlmann G.A., Light intensity distribution in conical refraction, Comm. Pure Appl. Math., 1982, 35(1), 69–80 http://dx.doi.org/10.1002/cpa.3160350104
  • [21] Vladimirov V.S., Equations of Mathematical Physics, Pure and Applied Mathematics, 3, Marcel Dekker, New York, 1971
  • [22] Vladimirov V.S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979
  • [23] Wijnands F., Pendry J.B., Garcia-Vidal F.J., Bell P.M., Roberts P.J., Martiín Moreno L., Green’s functions for Maxwell’s equations: application to spontaneous emission, Optical and Quantum Electronics, 1997, 29, 199–216 http://dx.doi.org/10.1023/A:1018506222632
  • [24] Yakhno V.G., Constructing Green’s function for the time-dependent Maxwell system in anisotropic dielectrics, J. Phys. A, 2005, 38(10), 2277–2287 http://dx.doi.org/10.1088/0305-4470/38/10/015
  • [25] Yakhno V.G., Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials, Internat. J. Engrg. Sci., 2008, 46(5), 411–426 http://dx.doi.org/10.1016/j.ijengsci.2007.12.005
  • [26] Yakhno V.G., Yakhno T.M., Modelling and simulation of electric and magnetic fields in homogeneous non-dispersive anisotropic materials, Comput. & Structures, 2007, 85(21–22), 1623–1634 http://dx.doi.org/10.1016/j.compstruc.2007.02.019
  • [27] Yakhno V.G., Yakhno T.M., Kasap M., A novel approach for modeling and simulation of electromagnetic waves in anisotropic dielectrics, Internat. J. Solids Structures, 2006, 43(20), 6261–6276 http://dx.doi.org/10.1016/j.ijsolstr.2005.07.028
  • [28] Yee K.S., Numerical solution of initial boundary value problems involving MaxwellŠs equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 http://dx.doi.org/10.1109/TAP.1966.1138693
  • [29] Yim Y.-S., Shin S.-Y., Lithium niobate integrated-optic voltage sensor with variable sensing ranges, Optics Communications, 1998, 152(4–6), 225–228 http://dx.doi.org/10.1016/S0030-4018(98)00198-9
  • [30] Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0122-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.