Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 10 | 1 | 188-203
Tytuł artykułu

Computation of the fundamental solution of electrodynamics for anisotropic materials

Treść / Zawartość
Warianty tytułu
Języki publikacji
A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform. Applying the suggested approach, the fundamental solution components are computed in general anisotropic media. Computational examples confirm robustness of the suggested method.
  • Dokuz Eylul University
  • Pamukkale University
  • Izmir University
  • [1] Burridge R., Qian J., The fundamental solution of the time-dependent system of crystal optics, European J. Appl. Math., 2006, 17(1), 63–94
  • [2] Cohen G.C., Higher-Order Numerical Methods for Transient Wave Equations, Sci. Comput., Springer, Berlin, 2002
  • [3] Cohen G.C., Heikkola E., Joly P., Neittaanmäki P. (Eds.), Mathematical and Numerical Aspects of Waves Propagation, Jyväskylä, June 30–July 4, 2003, Springer, Berlin, 2003
  • [4] Cottis P.G., Kondylis G.D., Properties of the dyadic Green’s function for an unbounded anisotropic medium, IEEE Trans. Antennas and Propagation, 1995, 43(2), 154–161
  • [5] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. 2: Partial Differential Equations, Interscience, New York-London, 1962
  • [6] Degerfeldt D., Rylander T., A brick-tetrahedron finite-element interface with stable hybrid explicit-implicit timestepping for Maxwell’s equations, J. Comput. Phys., 2006, 220(1), 383–393
  • [7] Dmitriev V.I., Silkin A.N., Farzan R., Tensor Green function for the system of Maxwell’s equations in a layered medium, Comput. Math. Model., 2002, 13(2), 107–118
  • [8] Dolgaev S.I., Lyalin A.A., Simakin A.V., Shafeev G.A., Fast etching of sapphire by a visible range quasi-cw laser radiation, Applied Surface Science, 1996, 96–98, 491–495
  • [9] Haba Z., Green functions and propagation of waves in strongly inhomogeneous media, J. Phys. A, 2004, 37(39), 9295–9302
  • [10] Hesthaven J.S., Warburton T., Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 2002, 181(1), 186–221
  • [11] Kong J.A., Electromagnetic Wave Theory, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1986
  • [12] Li L.-W., Liu S., Leong M.-S., Yeo T.-S., Circular cylindrical waveguide filled with uniaxial anisotropic media electromagnetic fields and dyadic Green’s functions, IEEE Trans. Microwave Theory Tech., 2001, 49(7), 1361–1364
  • [13] Ludwig D., Conical refraction in crystal optics and hydromagnetics, Comm. Pure Appl. Math., 1961, 14(2), 113–124
  • [14] Melrose R.B., Uhlmann G.A., Microlocal structure of involutive conical refraction, Duke Math. J., 1979, 46(3), 571–582
  • [15] Monk P., Finite Element Methods for Maxwell’s Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003
  • [16] Ortner N., Wagner P., Fundamental matrices of homogeneous hyperbolic systems. Applications to crystal optics, elastodynamics, and piezoelectromagnetism, ZAMM Z. Angew. Math. Mech., 2004, 84(5), 314–346
  • [17] Reed M., Simon B., Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975
  • [18] Taflove A., Hagness S.C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, 2000
  • [19] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Macmillan, New York, 1963
  • [20] Uhlmann G.A., Light intensity distribution in conical refraction, Comm. Pure Appl. Math., 1982, 35(1), 69–80
  • [21] Vladimirov V.S., Equations of Mathematical Physics, Pure and Applied Mathematics, 3, Marcel Dekker, New York, 1971
  • [22] Vladimirov V.S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979
  • [23] Wijnands F., Pendry J.B., Garcia-Vidal F.J., Bell P.M., Roberts P.J., Martiín Moreno L., Green’s functions for Maxwell’s equations: application to spontaneous emission, Optical and Quantum Electronics, 1997, 29, 199–216
  • [24] Yakhno V.G., Constructing Green’s function for the time-dependent Maxwell system in anisotropic dielectrics, J. Phys. A, 2005, 38(10), 2277–2287
  • [25] Yakhno V.G., Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials, Internat. J. Engrg. Sci., 2008, 46(5), 411–426
  • [26] Yakhno V.G., Yakhno T.M., Modelling and simulation of electric and magnetic fields in homogeneous non-dispersive anisotropic materials, Comput. & Structures, 2007, 85(21–22), 1623–1634
  • [27] Yakhno V.G., Yakhno T.M., Kasap M., A novel approach for modeling and simulation of electromagnetic waves in anisotropic dielectrics, Internat. J. Solids Structures, 2006, 43(20), 6261–6276
  • [28] Yee K.S., Numerical solution of initial boundary value problems involving MaxwellŠs equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307
  • [29] Yim Y.-S., Shin S.-Y., Lithium niobate integrated-optic voltage sensor with variable sensing ranges, Optics Communications, 1998, 152(4–6), 225–228
  • [30] Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.