PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 10 | 1 | 3-24
Tytuł artykułu

Generalizations of the Finite Element Method

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the generalization of the finite element method via the use of non-polynomial enrichment functions. Several methods employ this general approach, e.g. the extended finite element method and the generalized finite element method. We review these approaches and interpret them in the more general framework of the partition of unity method. Here we focus on fundamental construction principles, approximation properties and stability of the respective numerical method. To this end, we consider meshbased and meshfree generalizations of the finite element method and the use of smooth, discontinuous, singular and numerical enrichment functions.
Wydawca
Czasopismo
Rocznik
Tom
10
Numer
1
Strony
3-24
Opis fizyczny
Daty
wydano
2012-02-01
online
2011-12-09
Bibliografia
  • [1] Aragón A.M., Duarte C.A., Geubelle P.H., Generalized finite element enrichment functions for discontinuous gradient fields, Internat. J. Numer. Methods Engrg., 2010, 82(2), 242–268
  • [2] Babuška I., Banerjee U., Stable generalized finite element method, Comput. Methods Appl. Mech. Engrg. (in press), DOI: 10.1016/j.cma.2011.09.012
  • [3] Babuška I., Banerjee U., Osborn J.E., Meshless and generalized finite element methods: a survey of some major results, In: Meshfree Methods for Partial Differential Equations, Bonn, 2001, Lect. Notes Comput. Sci. Eng., 26, Springer, Berlin, 2003, 1–20 http://dx.doi.org/10.1007/978-3-642-56103-0_1
  • [4] Babuška I., Caloz G., Osborn J.E., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 1994, 31(4), 945–981 http://dx.doi.org/10.1137/0731051
  • [5] Babuška I., Lipton R., Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 2011, 9(1), 373–406 http://dx.doi.org/10.1137/100791051
  • [6] Babuška I., Melenk J.M., The partition of unity method, Internat. J. Numer. Methods Engrg., 1997, 40(4), 727–758 http://dx.doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  • [7] Béchet E., Minnebo H., Moës N., Burgardt B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Internat. J. Numer. Methods Engrg., 2005, 64(8), 1033–1056 http://dx.doi.org/10.1002/nme.1386
  • [8] Belytschko T., Black T., Elastic crack growth in finite elements with minimal remeshing, Internat. J. Numer. Methods Engrg., 1999, 45(5), 601–620 http://dx.doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  • [9] Belytschko T., Gracie R., Ventura G., A review of extended/generalized finite element methods for material modelling, Modelling and Simulation in Materials Science and Engineering, 2009, 17(4), #043001
  • [10] Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 1996, 139(1–4), 3–47 http://dx.doi.org/10.1016/S0045-7825(96)01078-X
  • [11] Belytschko T., Lu Y.Y., Gu L., Crack Propagation by Element-free Galerkin methods, Engrg. Fracture Mech., 1995, 51(2), 295–315 http://dx.doi.org/10.1016/0013-7944(94)00153-9
  • [12] Belytschko T., Moës N., Usui S., Parimi C., Arbitrary discontinuities in finite elements, Internat. J. Numer. Methods Engrg., 2001, 50(4), 993–1013 http://dx.doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
  • [13] Benzley S.E., Representation of singularities with isoparametric finite elements, Internat. J. Numer. Methods Engrg., 1974, 8(3), 537–545 http://dx.doi.org/10.1002/nme.1620080310
  • [14] Bordas S., Nguyen P.V., Dunant C., Guidom A., Nguyen-Dang H., An extended finite element library, Internat. J. Numer. Methods Engrg., 2006, 71(6), 703–732 http://dx.doi.org/10.1002/nme.1966
  • [15] Brenner S.C., Multigrid methods for the computation of singular solutions and stress intensity factors I: Corner singularities, Math. Comp., 1999, 68(266), 559–583 http://dx.doi.org/10.1090/S0025-5718-99-01017-0
  • [16] Brenner S.C., Sung L.-Y., Multigrid method for the computation of singular solutions and stress intensity factors II: Crack singularities, BIT, 1997, 37(3), 623–643 http://dx.doi.org/10.1007/BF02510243
  • [17] Brenner S.C., Sung L., Multigrid methods for the computation of singular solutions and stress intensity factors III: Interface singularities, Comput. Methods Appl. Mech. Engrg., 2003, 192(41–42), 4687–4702 http://dx.doi.org/10.1016/S0045-7825(03)00455-9
  • [18] Byskov E., The calculation of stress intensity factors using the finite element method with cracked elements, Internat. J. Fracture, 1970, 6(2), 159–167
  • [19] Cai Z., Kim S., A finite element method using singular functions for the poisson equation: corner singularities, SIAM J. Numer. Anal., 2001, 39(1), 286–299 http://dx.doi.org/10.1137/S0036142999355945
  • [20] Cai Z., Kim S., Shin B.-C., Solution methods for the Poisson equation with corner singularities: numerical results, SIAM J. Sci. Comput., 2001, 23(2), 672–682 http://dx.doi.org/10.1137/S1064827500372778
  • [21] Chessa J., Belytschko T., An extended finite element method for two-phase fluids, Trans. ASME J. Appl. Mech., 2003, 70(1), 10–17 http://dx.doi.org/10.1115/1.1526599
  • [22] Chessa J., Belytschko T., An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension, Internat. J. Numer. Methods Engrg., 2003, 58(13), 2041–2064 http://dx.doi.org/10.1002/nme.946
  • [23] Dahmen W., Dekel S., Petrushev P., Multilevel preconditioning for partition of unity methods: some analytic concepts, Numer. Math., 2007, 107(3), 503–532 http://dx.doi.org/10.1007/s00211-007-0089-7
  • [24] De S., Bathe K.J., The method of finite spheres, Comput. Mech., 2000, 25(4), 329–345 http://dx.doi.org/10.1007/s004660050481
  • [25] DeVore R.A., Lorentz G.G., Constructive Approximation, Grundlehren Math. Wiss., 303, Springer, Berlin, 1993
  • [26] Duarte C.A., Babuška I., Mesh-independent p-orthotropic enrichment using the generalized finite element method, Internat. J. Numer. Methods Engrg., 2002, 55(12), 1477–1492 http://dx.doi.org/10.1002/nme.557
  • [27] Duarte C.A., Babuška I., Oden J.T., Generalized finite element methods for three-dimensional structural mechanics problems, Comput. & Structures, 2000, 77(2), 215–232 http://dx.doi.org/10.1016/S0045-7949(99)00211-4
  • [28] Duarte C.A., Hamzeh O.N., Liszka T.J., Tworzydlo W.W., A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Internat. J. Numer. Methods Engrg., 2001, 190(15–17), 2227–2262
  • [29] Duarte C.A., Kim D.-J., Analysis and applications of a generalized finite element method with global-local enrichment functions, Comput. Methods Appl. Mech. Engrg., 2007, 197(6–8), 487–504
  • [30] Duarte C.A., Oden J.T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 1996, 139(1–4), 237–262 http://dx.doi.org/10.1016/S0045-7825(96)01085-7
  • [31] Duarte C.A., Oden J.T., H-p clouds ¶ an h-p meshless method, Numer. Methods Partial Differential Equations, 1996, 12(6), 673–705 http://dx.doi.org/10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
  • [32] Duarte C.A., Reno L.G., Simone A., A high-order generalized FEM for through-the-thickness branched cracks, Internat. J. Numer. Methods Engrg., 2007, 72(3), 325–351 http://dx.doi.org/10.1002/nme.2012
  • [33] Fish J., Yuan Z., Multiscale enrichment based on partition of unity, Internat. J. Numer. Methods Engrg., 2005, 62(10), 1341–1359 http://dx.doi.org/10.1002/nme.1230
  • [34] Fix G.J., Gulati S., Wakoff G.I., On the use of singular functions with finite element approximations, J. Comput. Phys., 1973, 13(2), 209–228 http://dx.doi.org/10.1016/0021-9991(73)90023-5
  • [35] Fries T.-P., Belytschko T., The extended/generalized finite element method: an overview of the method and its applications, Internat. J. Numer. Methods Engrg., 2010, 84(3), 253–304
  • [36] Gracie R., Ventura G., Belytschko T., A new fast finite element method for dislocations based on interior dicontinuities, Internat. J. Numer. Methods Engrg., 2007, 69(2), 423–441 http://dx.doi.org/10.1002/nme.1896
  • [37] Griebel M., Oswald P., Schweitzer M.A., A particle-partition of unity method. VI. A p-robust multilevel solver, In: Meshfree Methods for Partial Differential Equations II, Lect. Notes Comput. Sci. Eng., 43, Springer, Berlin, 2005, 71–92 http://dx.doi.org/10.1007/3-540-27099-X_5
  • [38] Griebel M., Schweitzer M.A., A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs, SIAM J. Sci. Comput., 2000, 22(3), 853–890 http://dx.doi.org/10.1137/S1064827599355840
  • [39] Griebel M., Schweitzer M.A., A particle-partition of unity method. II. Efficient cover construction and reliable integration, SIAM J. Sci. Comput., 2002, 23(5), 1655–1682 http://dx.doi.org/10.1137/S1064827501391588
  • [40] Griebel M., Schweitzer M.A., A particle-partition of unity method. III. A multilevel solver, SIAM J. Sci. Comput., 2002, 24(2), 377–409 http://dx.doi.org/10.1137/S1064827501395252
  • [41] Griebel M., Schweitzer M.A., A particle-partition of unity method. V. Boundary conditions, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, 519–542
  • [42] Griebel M., Schweitzer M.A., A particle-partition of unity method. VII. Adaptivity, In: Meshfree Methods for Partial Differential Equations III, Lect. Notes Comput. Sci. Eng., 57, Springer, Berlin, 2007, 121–147 http://dx.doi.org/10.1007/978-3-540-46222-4_8
  • [43] Grisvard P., Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math., 24, Pitman, Boston, 1985
  • [44] Grisvard P., Singularities in Boundary Value Problems, Rech. Math. Appl., 22, Springer, Berlin, 1992
  • [45] Groß S., Reusken A., An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 2007, 224(1), 40–58 http://dx.doi.org/10.1016/j.jcp.2006.12.021
  • [46] Hansbo A., Hansbo P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 2002, 191(47–48), 5537–5552 http://dx.doi.org/10.1016/S0045-7825(02)00524-8
  • [47] Huerta A., Belytschko T., Fernández-Méndez S., Rabczuk T., Meshfree methods, In: Encyclopedia of Computational Mechanics, 1, John Wiley & Sons, Chichester, 2004, chapter 10, 279–309
  • [48] Kim D.-J., Duarte C.A., Proença S.P., Generalized Finite Element Method with global-local enrichments for nonlinear fracture analysis, In: Mechanics of Solids in Brazil 2009, Rio de Janeiro, April 28–30, 2009, ABCM Symposium Series in Solid Mechanics, 2, Brazilian Society of Mechanical Sciences and Engineering, 2009, 317–330
  • [49] Laborde P., Pommier J., Renard Y., Salaün M., Higher order extended finite element method for cracked domains, Internat. J. Numer. Methods Engrg., 2005, 64(3), 354–381 http://dx.doi.org/10.1002/nme.1370
  • [50] Li H., A note on the conditioning of a class of generalized finite element methods, Appl. Numer. Math. (in press), DOI: 10.1016/j.apnum.2011.05.004
  • [51] Macri M., De S., Shepard M.S., Hierarchical tree-based discretization for the method of finite spheres, Comput. & Structures, 2003, 81(8–11), 789–803 http://dx.doi.org/10.1016/S0045-7949(02)00475-3
  • [52] Mariani S., Perego U., Extended finite element method for quasi-brittle fracture, Internat. J. Numer. Methods Engrg., 2003, 58(1), 103–126 http://dx.doi.org/10.1002/nme.761
  • [53] Mazzucato A.L., Nistor V., Qu Q., A non-conforming generalized finite element method for transmission problems, preprint available at http://www.math.psu.edu/mazzucat/preprint/GFEM.pdf
  • [54] Melenk J.M., On approximation in meshless methods, In: Frontiers of Numerical Analysis, Durham, July 4–9, 2004, Universitext, Springer, Berlin, 2005, 65–141
  • [55] Melenk J.M., Babuška I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 1996, 139(1–4), 289–314 http://dx.doi.org/10.1016/S0045-7825(96)01087-0
  • [56] Menk A., Bordas S.P.A., A robust preconditioning technique for the extended finite element method, Internat. J. Numer. Methods Engrg., 2011, 85(13), 1609–1632 http://dx.doi.org/10.1002/nme.3032
  • [57] Moës N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 1999, 46(1), 131–150 http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  • [58] Mohammadi S., Extended Finite Element Method, Blackwell, Oxford, 2008 http://dx.doi.org/10.1002/9780470697795
  • [59] Mousavi S.E., Sukumar N., Generalized Duffy transformation for integrating vertex singularities, Comput. Mech., 2010, 45(2–3), 127–140 http://dx.doi.org/10.1007/s00466-009-0424-1
  • [60] Mousavi S.E., Sukumar N., Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput. Methods Appl. Mech. Engrg., 2010, 199(49–52), 3237–3249 http://dx.doi.org/10.1016/j.cma.2010.06.031
  • [61] Nitsche J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 1971, 36, 9–15 http://dx.doi.org/10.1007/BF02995904
  • [62] Oden J.T., Duarte C.A., Clouds, Cracks and FEM’s, In: Recent Developments in Computational and Applied Mechanics, International Center for Numerical Methods in Engineering, CIMNE, Barcelona, 1997, 302–321
  • [63] Oh H.-S., Jae J.W., Hong W.T., The generalized product partition of unity for the meshless methods, J. Comput. Phys., 2010, 229(5), 1600–1620 http://dx.doi.org/10.1016/j.jcp.2009.10.047
  • [64] Pereira J.P., Duarte C.A., Guoy D., Jiao X., hp-generalized FEM and crack surface representation for non-planar 3-D cracks, Internat. J. Numer. Methods Engrg., 2009, 77(5), 601–633 http://dx.doi.org/10.1002/nme.2419
  • [65] Radtke F.K.F., Simone A., Sluys L.J., A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres, Internat. J. Numer. Methods Engrg., 2010, 84(6), 708–732 http://dx.doi.org/10.1002/nme.2916
  • [66] Radtke F.K.F., Simone A., Sluys L.J., A partition of unity finite element method for simulating non-linear debonding and matrix failure in thin fibre composites, Internat. J. Numer. Methods Engrg., 2011, 86(4–5), 453–476 http://dx.doi.org/10.1002/nme.3056
  • [67] Riker C., Holzer S.M., The mixed-cell-complex partition-of-unity method, Comput. Methods Appl. Mech. Engrg., 2009, 198(13–14), 1235–1248 http://dx.doi.org/10.1016/j.cma.2008.04.026
  • [68] Schweitzer M.A., A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, Lect. Notes Comput. Sci. Eng., 29, Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-642-59325-3
  • [69] Schweitzer M.A., Efficient implementation and parallelization of meshfree and particle methods ¶ the parallel multilevel partition of unity method, In: Frontiers of Numerical Analysis, Durham, July 4–9, 2004, Universitext, Springer, Berlin, 2005, 195–262
  • [70] Schweitzer M.A., A particle-partition of unity method. VIII. Hierarchical enrichment, In: Meshfree Methods for Partial Differential Equations IV, Lect. Notes Comput. Sci. Eng., 65, Springer, Berlin, 2008, 279–302 http://dx.doi.org/10.1007/978-3-540-79994-8_16
  • [71] Schweitzer M.A., Generalized Finite Element and Meshfree Methods, Habilitation thesis, Univeristät Bonn, 2008
  • [72] Schweitzer M.A., An algebraic treatment of essential boundary conditions in the particle-partition of unity method, SIAM J. Sci. Comput., 2008/09, 31(2), 1581–1602 http://dx.doi.org/10.1137/080716499
  • [73] Schweitzer M.A., Robust multilevel partition of unity method for problems with jumping coefficients, Technical report, Universität Stuttgart, 2011
  • [74] Schweitzer M.A., Stable enrichment and local preconditioning in the particle-partition of unity method, Numer. Math., 2011, 118(1), 137–170 http://dx.doi.org/10.1007/s00211-010-0323-6
  • [75] Schweitzer M.A., Multilevel particle-partition of unity method, Numer. Math., 2011, 118(2), 307–328 http://dx.doi.org/10.1007/s00211-010-0346-z
  • [76] Shabir Z., Van der Giessen E., Duarte C.A., Simone A., The role of cohesive properties on intergranular crack propagation in brittle polycrystals, Modelling and Simulation in Materials Science and Engineering, 2011, 19(3), #035006 http://dx.doi.org/10.1088/0965-0393/19/3/035006
  • [77] Shepard D., A two-dimensional interpolation function for irregularly-spaced data, In: Proceedings of the 1968 23rd ACM National Conference, Association for Computing Machinery, New York, 1968, 517–524 http://dx.doi.org/10.1145/800186.810616
  • [78] Simone A., Duarte C.A., Van der Giessen E., A generalized finite element method for polycrystals with discontinuous grain boundaries, Internat. J. Numer. Methods Engrg., 2006, 67(8), 1122–1145 http://dx.doi.org/10.1002/nme.1658
  • [79] Strouboulis T., Babuška I., Copps K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 2000, 181(1–3), 43–69 http://dx.doi.org/10.1016/S0045-7825(99)00072-9
  • [80] Strouboulis T., Babuška I., Hidajat R., The generalized finite element method for Helmholtz equation: theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg., 2006, 195(37–40), 4711–4731 http://dx.doi.org/10.1016/j.cma.2005.09.019
  • [81] Strouboulis T., Copps K., Babuška I., The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 2001, 190(32–33), 4081–4193 http://dx.doi.org/10.1016/S0045-7825(01)00188-8
  • [82] Strouboulis T., Hidajat R., Babuška I., The generalized finite element method for Helmholtz equation. II. Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment, Comput. Meth. Appl. Mech. Engrg., 2008, 197(5), 364–380 http://dx.doi.org/10.1016/j.cma.2007.05.019
  • [83] Strouboulis T., Zhang L., Babuška I., Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids, Comput. Methods Appl. Mech. Engrg., 2003, 192(28–30), 3109–3161 http://dx.doi.org/10.1016/S0045-7825(03)00347-5
  • [84] Strouboulis T., Zhang L., Babuška I., p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems, Internat. J. Numer. Methods Engrg., 2004, 60(10), 1639–1672 http://dx.doi.org/10.1002/nme.1017
  • [85] Stüben K., An introduction to algebraic multigrid, An appendix to: Trottenberg U., Oosterlee C.W., Schüller A., Multigrid, Academic Press, San Diego, 2001, 413–532
  • [86] Sukumar N., Pask J.E., Classical and enriched finite element formulations for Bloch-periodic boundary conditions, Internat. J. Numer. Methods Engrg., 2009, 77(8), 1121–1138 http://dx.doi.org/10.1002/nme.2457
  • [87] Sukumar N., Prévost J.-H., Modeling quasi-static crack growth with the extended finite element method. I. Computer implementation, Internat. J. Solids Structures, 2003, 40(26), 7513–7537 http://dx.doi.org/10.1016/j.ijsolstr.2003.08.002
  • [88] Ventura G., Gracie R., Belytschko T., Fast integration and weight function blending in the extended finite element method, Internat. J. Numer. Methods Engrg., 2009, 77(1), 1–29 http://dx.doi.org/10.1002/nme.2387
  • [89] Ventura G., Moran B., Belytschko T., Dislocations by partition of unity, Internat. J. Numer. Methods Engrg., 2005, 62(11), 1463–1487 http://dx.doi.org/10.1002/nme.1233
  • [90] Xu J., Zikatanov L.T., On multigrid methods for generalized finite element methods, In: Meshfree Methods for Partial Differential Equations, Bonn, 2001, Lect. Notes Comput. Sci. Eng., 26, Springer, Berlin, 2003, 401–418 http://dx.doi.org/10.1007/978-3-642-56103-0_28
  • [91] Catalogue of Finite Element Books, http://www.solid.ikp.liu.se/fe/index.html
  • [92] National Agency for Finite Element Methods and Standards, http://www.nafems.org
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0112-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.